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Solution 6.1   

Let the losses due to storm, fire, and theft be denoted 1X , 2X  and 3X  respectively. 
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The distribution function for a uniform distribution with range [ , ]a b  is: 
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So, we can calculate the probability as: 
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Solution 6.2   

We have: 
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Solution 6.3   

 From 2010, this question is no longer covered by the Exam P syllabus. 

Solution 6.4   

We need: 
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Integrating by parts: 
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Solution 6.5   

We want to calculate the following: 
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Now: 
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Solution 6.6   

First we need the value of c .  This is found from: 

 

∞
−

∞

=

⇒ = − =

⇒ =

∫ 4

3

3
3

1

1 1 1
813

81

c x dx

c x

c

 

The expected lifetime is then: 
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Solution 6.7   

For the exponential distribution with mean 50, we have: 

 ( ) /50Pr 1 ( ) xX x F x e−> = − =  

Hence: 
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Alternatively, using the memoryless property we have: 

 ( ) ( ) 150/50 3Pr 200 50 Pr 150 0.0498X X X e e− −> > = > = = =  

Solution 6.8     

Let X  be the random time (in days) until the high-risk driver has an accident.  Since X  follows an exponential 
distribution, the cdf is:  

 ( ) /1 xF x e θ−= −  

We are given that 
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Hence: 
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Note:  It is unnecessary to calculate the precise value of θ .  If you did solve for θ , you should find that 
140.184θ = . 
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Solution 6.9     

Let T  denote the random time required to repair the machine.  It is assumed to be exponentially distributed with 
mean 2Tθ = .  Let X  denote the cost of replacement parts.  It is assumed to be gamma distributed with 
parameters α  and Xθ  such that: 

 [ ]100 XE X α θ= =   

 ( ) 25,000 var XX α θ= =  

Solving these equations results in:  

 2α =        50Xθ =  

We are asked to calculate the probability of the event { } { }3 150T X> ∪ > . 

We can calculate the two components as follows: 
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By the additive probability law, we have: 
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Solution 6.10     

We can calculate the required probability as follows: 
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If there are no claims (ie 0N = ), then the claim amount must be zero, so: 
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So from basic laws of probability, we have: 
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Solution 6.11     

The waiting time between accidents follows an exponential distribution with mean θ = =5 2.5
2

 days. 

Hence: 

 ( ) − −> = − = = =
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Solution 6.12     

From the form of the pdf, we can see that X  follows a gamma distribution with 6α =  and 100θ = . 

Hence: 

 [ ] 6 100 600E X αθ= = × =  

Solution 6.13     

First, we’ll determine the parameter values: 
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Since α  is a positive integer, the cdf can be written as: 

 ( )
2

/5
21 1

5 2!5
x x xF x e−  

= − + +  
 

 

Finally: 
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Solution 6.14     

From the form of the moment generating function, we can see that X  follows a gamma distribution with 
parameters 2α =  and 3θ = .  Hence: 

 ( ) 2 2var 2 3 18X αθ= = × =  
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Solution 6.15     

Differentiating the cumulant generating function, we have: 
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Hence the skewness is: 
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Solution 6.16     

 From 2010, this question is no longer covered by the Exam P syllabus. 

Solution 6.17     

 From 2010, this question is no longer covered by the Exam P syllabus. 

Solution 6.18     

First we need the value of c .  This can be found from: 
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Now: 

 ′ = +∫ ( ) ( )( ) g x g xg x e dx e k    

where k  is a constant. 
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So: 
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Now we need: 
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Solution 6.19     

 From 2010, this question is no longer covered by the Exam P syllabus. 

Solution 6.20     

 From 2010, this question is no longer covered by the Exam P syllabus. 

 

 


