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Solution 6.1   

Let the losses due to storm, fire, and theft be denoted 1X , 2X  and 3X  respectively. 

 
{ }( ) { }( )

( ) ( ) ( )
1 2 3 1 2 3

1 2 3

Pr max , , 2.5 1 Pr max , , 2.5

1 Pr 2.5 Pr 2.5 Pr 2.5

X X X X X X

X X X

> = − ≤

= − ≤ × ≤ × ≤
 

The distribution function for a uniform distribution with range [ , ]a b  is: 
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So, we can calculate the probability as: 
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Solution 6.2   

We have: 
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Solution 6.3   

Since we have formulas for [ ]E X  and 2[ ]E X , it is convenient to first calculate the second moment: 

 ( ) [ ]( )22 2var 18.75 2.5 25E X X E X  = + = + =   

Hence: 
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We solve these simultaneous equations to find the parameters: 
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Now it is easy to calculate the 90th percentile: 
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Solution 6.4   

If we notice that X  follows a Pareto distribution with parameters 3α =  and 2,000θ = , the expected return is 
easily calculated using the general result as: 
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Solution 6.5   

We want to calculate the following: 
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Note that the pdf is that of a one-parameter Pareto distribution with 3α =  and 1θ = , so the cdf is: 
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Finally: 
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Solution 6.6   

The lifetime X  follows a single-parameter Pareto distribution with 3α =  and 3θ = , as detailed on page 138. 

Recall that we can define X Y θ= + , where Y  follows a standard (two-parameter) Pareto distribution with 3α =  
and 3θ = . 

The expected value of X  is given by: 
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Hence, the expected value is: 
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Solution 6.7   

For the exponential distribution with mean 50, we have: 

 ( ) /50Pr 1 ( ) xX x F x e−> = − =  

Hence: 
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Alternatively, using the memoryless property we have: 

 ( ) ( ) 150 /50 3Pr 200 50 Pr 150 0.0498X X X e e− −> > = > = = =  

Solution 6.8     

Let X  be the random time (in days) until the high-risk driver has an accident.  Since X  follows an exponential 
distribution, the cdf is:  

 ( ) /1 xF x e θ−= −  

We are given that 
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Hence: 

 ( ) ( )8/580/ 50/ 8/5Pr 80 1 1 1 0.70 0.4349X e eθ θ− −< = − = − = − =  

Note:  It is unnecessary to calculate the precise value of θ .  If you did solve for θ , you should find that 
140.184θ = . 
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Solution 6.9     

Let T  denote the random time required to repair the machine.  It is assumed to be exponentially distributed with 
mean 2Tθ = .  Let X  denote the cost of replacement parts.  It is assumed to be gamma distributed with 
parameters α  and Xθ  such that: 

 [ ]100 XE X αθ= =   

 ( ) 25,000 var XX αθ= =  

Solving these equations results in:  

 2α =        50Xθ =  

We are asked to calculate the probability of the event { } { }3 150T X> ∪ > . 

We can calculate the two components as follows: 
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By the additive probability law, we have: 
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Solution 6.10     

We can calculate the required probability as follows: 
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If there are no claims (ie 0N = ), then the claim amount must be zero, so: 

 ( )Pr 4 8 0 0S N< < ∩ = =  

Therefore: 
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So from basic laws of probability, we have: 
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Solution 6.11     

The waiting time between accidents follows an exponential distribution with mean θ = =
5 2.5
2

 days. 

Hence: 

 ( ) − −> = − = = =
3

2.5 1.2Pr 3 1 (3) 0.3012X F e e  

Solution 6.12     

From the form of the pdf, we can see that X  follows a gamma distribution with 6α =  and 100θ = . 

Hence: 

 [ ] 6 100 600E X αθ= = × =  

Solution 6.13     

First, we’ll determine the parameter values: 
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Since α  is a positive integer, the cdf can be written as: 
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Finally: 

 ( ) ( )
( )

( )
( )

Pr 30 1 30 1 0.93803 0.06197Pr 30 15 0.1464
Pr 15 1 15 1 0.57681 0.42319

X F
X X

X F
> − −

> > = = = = =
> − −

 

Solution 6.14     

From the form of the moment generating function, we can see that X  follows a gamma distribution with 
parameters 2α =  and 3θ = .  Hence: 

 ( ) 2 2var 2 3 18X αθ= = × =  
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Solution 6.15     

Differentiating the cumulant generating function, we have: 
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Hence the skewness is: 
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Solution 6.16     

Let X  be the sum of the two sample values. 

By the additive property, the sum of the two sample values follows a chi-square distribution with 2 degrees of 
freedom.  A chi-square distribution with 2 degrees of freedom is equivalent to an exponential distribution with 
parameter 2θ = . 

Hence the required probability is: 

 ( ) ( ) 2.3/2Pr Sample mean 1.15 Pr 2.3 (2.3) 1 0.6834X F e−< = < = = − =  

Solution 6.17     

With 0.25τ =  and 10θ = , we have: 
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Solution 6.18     

The given pdf is for a Weibull distribution with 3τ =  and θ = 3 1
4

. 

Using the general result for the cdf, we have: 
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Solution 6.19     

With 1a =  and 7b = , the pdf is: 
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Hence, the cdf is: 
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Now we can compute the median as: 
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Solution 6.20     

The second moment is: 

 ( ) [ ]( )
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Solving the moment equations for the parameters, we have: 
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Substituting, we have: 
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