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Solutions to practice questions – Chapter 6
1

Solution 6.1 

Let the losses due to storm, fire, and theft be denoted 1X , 2X  and 3X  respectively.
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The distribution function for a uniform distribution with range [ , ]a b  is:
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−

So, we can calculate the probability as:
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Solution 6.2 

We have:
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Hence:
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Solution 6.3 

Since we have formulas for [ ]E X  and 2[ ]E X , it is convenient to first calculate the second moment:

( ) [ ]( )22 2var 18.75 2.5 25E X X E X  = + = + = 

Hence:
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We solve these simultaneous equations to find the parameters:
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Now it is easy to calculate the 90th percentile:
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Solution 6.4 

If we notice that X  follows a Pareto distribution with parameters 3α =  and 2,000θ = , the expected return is
easily calculated using the general result as:
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Solution 6.5 

We want to calculate the following:
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Note that the pdf is that of a one-parameter Pareto distribution with 3α =  and 1θ = , so the cdf is:
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Finally:
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Solution 6.6 

The lifetime X  follows a single-parameter Pareto distribution with 3α =  and 3θ = .

Recall that we can define X Y θ= + , where Y  follows a standard (two-parameter) Pareto distribution with 3α =
and 3θ = .

The expected value of X  is given by:
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Hence, the expected value is:
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Solution 6.7 

For the exponential distribution with mean 50, we have:

( ) /50Pr 1 ( ) xX x F x e−> = − =

Hence:
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Alternatively, using the memoryless property we have:

( ) ( ) 150/50 3Pr 200 50 Pr 150 0.0498X X X e e− −> > = > = = =

Solution 6.8 

Let X  be the random time (in days) until the high-risk driver has an accident.  Since X  follows an exponential
distribution, the cdf is:

( ) /1 xF x e θ−= −

We are given that
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Hence:

( ) ( )8/580/ 50/ 8/5Pr 80 1 1 1 0.70 0.4349X e eθ θ− −< = − = − = − =

Note:  It is unnecessary to calculate the precise value of θ .  If you did solve for θ , you should find that
140.184θ = .
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Solution 6.9 

Let T  denote the random time required to repair the machine.  It is assumed to be exponentially distributed with
mean 2Tθ = .  Let X  denote the cost of replacement parts.  It is assumed to be gamma distributed with
parameters α  and Xθ  such that:

[ ]100 XE X α θ= =

( ) 25,000 var XX α θ= =

Solving these equations results in:

2α =        50Xθ =

We are asked to calculate the probability of the event { } { }3 150T X> ∪ > .

We can calculate the two components as follows:
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By the additive probability law, we have:
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Solution 6.10 

We can calculate the required probability as follows:
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If there are no claims (ie 0N = ), then the claim amount must be zero, so:
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So from basic laws of probability, we have:
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Solution 6.11 

The waiting time between accidents follows an exponential distribution with mean 5/2 2.5θ = =  days.

Hence:

( ) 3/2.5 1.2Pr 3 1 (3) 0.3012X F e e− −> = − = = =

Solution 6.12 

From the form of the pdf, we can see that X  follows a gamma distribution with 6α =  and 100θ = .

Hence:

[ ] 6 100 600E X αθ= = × =

Solution 6.13 

First, we’ll determine the parameter values:
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Since α  is a positive integer, the cdf can be written as:
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Solution 6.14 

From the form of the moment generating function, we can see that X  follows a gamma distribution with
parameters 2α =  and 3θ = .  Hence:

( ) 2 2var 2 3 18X αθ= = × =
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Solution 6.15 

Differentiating the cumulant generating function, we have:
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Hence the skewness is:
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Solution 6.16 

Let X  be the sum of the two sample values.

By the additive property, the sum of the two sample values follows a chi-square distribution with 2 degrees of
freedom.  A chi-square distribution with 2 degrees of freedom is equivalent to an exponential distribution with
parameter 2θ = .

Hence the required probability is:

( ) ( ) 2.3/2Pr Sample mean 1.15 Pr 2.3 (2.3) 1 0.6834X F e−< = < = = − =

Solution 6.17 

With 0.25τ =  and 10θ = , we have:
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Solution 6.18 

The given pdf is for a Weibull distribution with 3τ =  and 3 1/4θ = .

Using the general result for the cdf, we have:
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Solution 6.19 

With 1a =  and 7b = , the pdf is:
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Hence, the cdf is:
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Now we can compute the median as:

( ) ( )7 1/7
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Solution 6.20 

The second moment is:

( ) [ ]( )
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Solving the moment equations for the parameters, we have:
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Substituting, we have:
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