

Actuarial Models Third Edition

By M Gauger, J Lewis, M Willder, M Lewry Published by BPP Professional Education

Solutions to practice questions - Chapter 10

Solution 10.1

The rate of this process is $\lambda=0.2$ per minute. So the number of coins found during a 2 -minute walk follows a Poisson distribution with mean $2 \lambda=0.40$. As a result, we have:

$$
\operatorname{Pr}(N(2) \geq 2)=1-e^{-0.4}(1+0.4)=0.06155
$$

Solution 10.2

$$
N(2) \sim \text { Poisson mean } 0.4 \Rightarrow E[N]=\operatorname{var}(N)=0.4
$$

Solution 10.3

The distribution of $N(5)$ is Poisson with parameter $5 \lambda=1$.

$$
\begin{aligned}
& \{N(5) \geq 2 \text { and } N(10) \geq 3\}=\{N(5)=2 \text { and } N(10)-N(5) \geq 1\} \cup\{N(5) \geq 3\} \\
& \begin{aligned}
\operatorname{Pr}(N(5) \geq 2 & \text { and } N(10) \geq 3)=\operatorname{Pr}(N(5)=2 \text { and } N(10)-N(5) \geq 1)+\operatorname{Pr}(N(5) \geq 3) \\
& =\operatorname{Pr}(N(5)=2) \underbrace{\operatorname{Pr}(N(10)-N(5) \geq 1)}_{\text {same as } \operatorname{Pr}(N(5) \geq 1)}+\operatorname{Pr}(N(5) \geq 3)
\end{aligned} \\
& \quad=e^{-1} \frac{1^{2}}{2!} \times\left(1-e^{-1}\right)+\left(1-e^{-1}\left(1+1+\frac{1^{2}}{2!}\right)\right)=0.19657
\end{aligned}
$$

Solution 10.4

$$
\begin{aligned}
\operatorname{Pr}(N(5) & =2 \mid N(10)=3)=\frac{\operatorname{Pr}(N(5)=2 \text { and } N(10)=3)}{\operatorname{Pr}(N(10)=3)} \\
& =\frac{\operatorname{Pr}(N(5)=2 \text { and } N(10)-N(5)=1)}{\operatorname{Pr}(N(10)=3)}=\frac{\operatorname{Pr}(N(5)=2) \operatorname{Pr}(N(10)-N(5)=1)}{\operatorname{Pr}(N(10)=3)} \\
& =\frac{\operatorname{Pr}(N(5)=2) \operatorname{Pr}(N(5)=1)}{\operatorname{Pr}(N(10)=3)}=\frac{e^{-1} \frac{1^{2}}{2!} \times e^{-1} \frac{1^{1}}{1!}}{e^{-2} \frac{2^{3}}{3!}}=\binom{3}{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)=\frac{3}{8}
\end{aligned}
$$

Solution 10.5

Since the process rate is $\lambda=0.4$ per day, the inter-arrival time for this process, T, is exponentially distributed with mean $1 / \lambda=2.5$ days. You are asked to calculate $\operatorname{Pr}(T \leq 7 \mid T>5)$. Due to the memory-less property of the exponential distribution, we have:

$$
\operatorname{Pr}(T \leq 7 \mid T>5)=\operatorname{Pr}(T-5 \leq 2 \mid T>5)=\operatorname{Pr}(T \leq 2)=\int_{0}^{2} f_{T}(t) d t=\int_{0}^{2} 0.4 e^{-0.4 t} d t=1-e^{-0.8}=0.55067
$$

Solution 10.6

We must solve the inequality:

$$
0.90 \leq \operatorname{Pr}(N(n) \geq 2)=1-e^{-0.4 n}(1+0.4 n)
$$

By trial and error you will find that the right hand side is 0.874 when $n=9$, and it is 0.908 when $n=10$. So the intersection must be observed for 10 full days to have at least a 90% chance of seeing at least 2 accidents.

Solution 10.7

The generator matrix for this model is:

$$
A=\left(\begin{array}{ccc}
-0.4 & 0.1 & 0.3 \\
0 & -0.2 & 0.2 \\
0 & 0 & 0
\end{array}\right)
$$

So the matrix form of the forward equations can be written:

$$
\frac{\partial}{\partial t}\left(\begin{array}{lll}
p_{11}(t) & p_{12}(t) & p_{13}(t) \\
p_{21}(t) & p_{22}(t) & p_{23}(t) \\
p_{31}(t) & p_{32}(t) & p_{33}(t)
\end{array}\right)=\left(\begin{array}{lll}
p_{11}(t) & p_{12}(t) & p_{13}(t) \\
p_{21}(t) & p_{22}(t) & p_{23}(t) \\
p_{31}(t) & p_{32}(t) & p_{33}(t)
\end{array}\right)\left(\begin{array}{ccc}
-0.4 & 0.1 & 0.3 \\
0 & -0.2 & 0.2 \\
0 & 0 & 0
\end{array}\right)
$$

Pulling out the relevant matrix entry, we find that:

$$
\frac{\partial}{\partial t} p_{11}(t)=-0.4 p_{11}(t)
$$

and the solution of this differential equation (subject to the correct initial condition that $p_{11}(0)=1$) is $p_{11}(t)=e^{-0.4 t}$.

Alternatively, we can observe that since it is never possible to re-enter state 1 once the state has been left, $p_{11}(t)$ must be the same as the occupancy probability $p_{\overline{11}}(t)$. Since the model is time-homogeneous, the waiting time is exponential and the holding time probability is just $1-F(t)$, where $F(t)$ is the distribution function of an exponential distribution with mean equal to the sum of the transition rates out of the relevant state.

Solution 10.8

To find $p_{12}(t)$, we can use the matrix equation from the previous question. Again pulling out the relevant matrix entry, we find that:

$$
\frac{\partial}{\partial t} p_{12}(t)=0.1 p_{11}(t)-0.2 p_{12}(t)
$$

Substituting in the expression for $p_{11}(t)$ that we found in the previous question:

$$
\frac{\partial}{\partial t} p_{12}(t)=0.1 e^{-0.4 t}-0.2 p_{12}(t)
$$

Rearranging this differential equation:

$$
\frac{\partial}{\partial t} p_{12}(t)+0.2 p_{12}(t)=0.1 e^{-0.4 t}
$$

Multiplying through by the integrating factor of $e^{0.2 t}$ we get:

$$
\frac{\partial}{\partial t} p_{12}(t) e^{0.2 t}+0.2 e^{0.2 t} p_{12}(t)=0.1 e^{-0.2 t}
$$

Integrating both sides of this equation:

$$
e^{0.2 t} p_{12}(t)=\int 0.1 e^{-0.2 t} d t=-0.5 e^{-0.2 t}+C
$$

To find the relevant constant, we observe that $p_{12}(0)=0$, so that $C=0.5$, and that $p_{12}(t)=0.5\left(e^{-0.2 t}-e^{-0.4 t}\right)$.

Solution 10.9

The corresponding forward equation for $p_{13}(t)$ is:

$$
\frac{\partial}{\partial t} p_{13}(t)=0.3 p_{11}(t)+0.2 p_{12}(t)
$$

Since we have expressions for both of the terms on the right hand side, we can write:

$$
\frac{\partial}{\partial t} p_{13}(t)=0.3 e^{-0.4 t}+0.2\left[0.5 e^{-0.2 t}-0.5 e^{-0.4 t}\right]=0.2 e^{-0.4 t}+0.1 e^{-0.2 t}
$$

Integrating this expression directly, we find that:

$$
p_{13}(t)=-0.5 e^{-0.4 t}-0.5 e^{-0.2 t}+C
$$

Using the initial condition that $p_{13}(0)=0$, we find that $C=1$, so that $p_{13}(t)=1-0.5 e^{-0.4 t}-0.5 e^{-0.2 t}$.
There are a number of comments that could be made about these results.
(1) Note that as $t \rightarrow \infty, p_{11}(t) \rightarrow 0, p_{12}(t) \rightarrow 0$ and $p_{13}(t) \rightarrow 1$. This is consistent with our understanding of the model, since, if we look at the transition diagram, we see that the model is certain to end up in state 3 , the absorbing state, in the long term.
(2) We could have found the expression for $p_{13}(t)$ more quickly by using the result $p_{13}(t)=1-p_{11}(t)-p_{12}(2)$, rather than by integrating again. Since the model must be in one of the three states at any time t, the sum of the three probabilities is 1 , for any value of t.

Solution 10.10

Since it is not possible to return to state 1 once the state has been left, we have:

$$
p_{11}(t)=p_{\overline{11}}(t)=e^{-(\alpha+\beta) t}
$$

For $p_{12}(t)$ we need the Kolmogorov forward differentialequation. In matrix form, we have:

$$
\frac{\partial}{\partial t}\left(\begin{array}{ccc}
p_{11}(t) & p_{12}(t) & p_{13}(t) \\
p_{21}(t) & p_{22}(t) & p_{23}(t) \\
p_{31}(t) & p_{32}(t) & p_{33}(t)
\end{array}\right)=\left(\begin{array}{lll}
p_{11}(t) & p_{12}(t) & p_{13}(t) \\
p_{21}(t) & p_{22}(t) & p_{23}(t) \\
p_{31}(t) & p_{32}(t) & p_{33}(t)
\end{array}\right)\left(\begin{array}{ccc}
-(\alpha+\beta) & \alpha & \beta \\
0 & -\gamma & \gamma \\
0 & 0 & 0
\end{array}\right)
$$

Selecting the relevant entry:

$$
\frac{\partial}{\partial t} p_{12}(t)=\alpha p_{11}(t)-\gamma p_{12}(t)
$$

Substituting in the relevant expression for $p_{11}(t)$ and rearranging:

$$
\frac{\partial}{\partial t} p_{12}(t)+\gamma p_{12}(t)=\alpha e^{-(\alpha+\beta) t}
$$

Now multiplying through by the integrating factor $e^{\gamma t}$:

$$
e^{\gamma t} \frac{\partial}{\partial t} p_{12}(t)+\gamma e^{\gamma t} p_{12}(t)=\alpha e^{-(\alpha+\beta-\gamma) t}
$$

Integrating both sides of this equation:

$$
e^{\gamma t} p_{12}(t)=\int \alpha e^{-(\alpha+\beta-\gamma) t} d t=\frac{-\alpha}{\alpha+\beta-\gamma} e^{-(\alpha+\beta-\gamma) t}+C
$$

Noting that when $t=0$ we have $p_{12}(0)=0$, we find that $C=\frac{\alpha}{\alpha+\beta-\gamma}$, and so:

$$
p_{12}(t)=\frac{\alpha}{\alpha+\beta-\gamma}\left[e^{-\gamma t}-e^{-(\alpha+\beta) t}\right]
$$

Solution 10.11

We can find $p_{13}(t)$ by subtraction:

$$
p_{13}(t)=1-p_{11}(t)-p_{12}(t)=1-e^{-(\alpha+\beta) t}-\frac{\alpha}{\alpha+\beta-\gamma}\left[e^{-\gamma t}-e^{-(\alpha+\beta) t}\right]
$$

Solution 10.12

We have:

$$
p_{11}(0,4)=p_{11}(0,1) p_{11}(1,4)
$$

For $t<1$ we have $\alpha+\beta=0.6$, and for $t>1$ we have $\alpha+\beta=0.3$. So the overall probability is:

$$
p_{11}(0,4)=e^{-0.6 \times 1-0.3 \times 3}=e^{-1.5}=0.22313
$$

For $p_{12}(0,4)$, using the same logic, we have:

$$
p_{12}(0,4)=p_{11}(0,1) p_{12}(1,4)+p_{12}(0,1) p_{22}(1,4)
$$

We now need an expression for $p_{22}(t)$.
Going back to the generator matrix, we see that:

$$
\frac{\partial}{\partial t} p_{22}(t)=\alpha p_{21}(t)-\gamma p_{22}(t)
$$

But, using this model, it is not possible to return to state 1 from state 2. So $p_{21}(t)=0$ for all t, and the equation becomes:

$$
\frac{\partial}{\partial t} p_{22}(t)=-\gamma p_{22}(t) \quad \Rightarrow \quad p_{22}(t)=e^{-\gamma t}
$$

For $t>1$, we have $\gamma=0.2$. So:

$$
p_{22}(1,4)=e^{-0.2 \times 3}=e^{-0.6}
$$

So we can now calculate the value of $p_{12}(0,4)$:

$$
\begin{aligned}
p_{12}(0,4) & =p_{11}(0,1) p_{12}(1,4)+p_{12}(0,1) p_{22}(1,4) \\
& =e^{-0.6} \times \frac{0.2}{0.2+0.1-0.2}\left[e^{-0.2 \times 3}-e^{-0.3 \times 3}\right]+\frac{0.4}{0.5+0.2-0.1}\left(e^{-0.1 \times 1}-e^{-0.6 \times 1}\right) \times e^{-0.6} \\
& =0.156128+0.156313 \\
& =0.31244
\end{aligned}
$$

Solution 10.13

We can now write:

$$
p_{13}(0,4)=p_{11}(0,1) p_{13}(1,4)+p_{12}(0,1) p_{23}(1,4)+p_{13}(0,1) p_{33}(1,4)
$$

Note first that $p_{33}(1,4)=1$ since this is the absorbing state. We now need $p_{23}(1,4)$. But $p_{23}(t)=1-p_{22}(t)=1-e^{-\gamma t}$, so that:

$$
p_{23}(1,4)=1-e^{-0.6}
$$

We can now put together the whole expression for $p_{13}(0,4)$:

$$
\begin{aligned}
p_{13}(0,4) & =p_{11}(0,1) p_{13}(1,4)+p_{12}(0,1) p_{23}(1,4)+p_{13}(0,1) p_{33}(1,4) \\
& =e^{-0.6}\left[1-e^{-0.9}-2\left(e^{-0.6}-e^{-0.9}\right)\right]+0.8\left[e^{-0.1}-e^{-0.6}\right]\left(1-e^{-0.6}\right)+\left[1-e^{-0.6}-0.8\left(e^{-0.1}-e^{-0.6}\right)\right] \\
& =0.169553+0.128508+0.166368 \\
& =0.46443
\end{aligned}
$$

Solution 10.14

The APV of the benefit is:

$$
\begin{aligned}
& 100 \int_{0}^{\infty} e^{-\delta t} p_{\overline{11}}(t)\left(\mu_{12}+\mu_{13}\right) d t \\
& =100 \int_{0}^{\infty} e^{-0.04 t} e^{-0.06 t}(0.05+0.01) d t \\
& =6 \int_{0}^{\infty} e^{-0.10 t} d t \\
& =\frac{6}{0.1}=60
\end{aligned}
$$

Solution 10.15

The APV of the benefit valued at the time of entering state 2 is:

$$
10 \int_{0}^{\infty} e^{-\delta t} p_{\overline{22}}(t) d t=10 \int_{0}^{\infty} e^{-0.04 t} e^{-0.03 t} d t=10 \int_{0}^{\infty} e^{-0.07 t} d t=\frac{10}{0.07}=\frac{1,000}{7}
$$

So the APV of the benefit valued at the date of issue of the policy is:

$$
\frac{1,000}{7} \int_{0}^{\infty} e^{-\delta t} p_{\overline{11}}(t) \mu_{12} d t=\frac{1,000}{7} \int_{0}^{\infty} e^{-0.04 t} e^{-0.06 t}(0.05) d t=\frac{50}{7} \int_{0}^{\infty} e^{-0.10 t}=\frac{50}{7 \times 0.1}=\frac{500}{7}=71.4286
$$

Solution 10.16

The holding time in state 1 is exponentially distributed with mean $\frac{1}{0.05+0.01}=16.67$ years.

Solution 10.17

From Solution 10.16, the expected holding time in state 1 is 16.67 years. When the policyholder leaves state 1 , he enters state 2 with probability $\frac{0.05}{0.05+0.01}=\frac{5}{6}$ and he enters state 3 with probability $\frac{1}{6}$. Note that these probabilities are just ratios of the forces of transition. $\frac{5}{6}$ ths of the total force out of state 1 is into state 2 and the other $\frac{1}{6}$ is into state 3 .

If the policyholder enters state 2 , the expected time until he then enters state 3 is $\frac{1}{0.03}=33.33$ years. So the expected time until a new policyholder enters state 3 is:

$$
16.67+\frac{5}{6} \times 33.33+\frac{1}{6} \times 0=44.44 \text { years }
$$

Solution 10.18

The continuously payable premium is the solution of the equation:

$$
P \bar{a}_{x}=100,000 \bar{A}_{x}^{A}+50,000 \bar{A}_{x}^{N A}
$$

where \bar{A}_{x}^{A} denotes the EPV of a benefit of 1 unit paid on accidental death, and $\bar{A}_{x}^{N A}$ denotes the EPV of a benefit of 1 unit paid on non-accidental death.

Using the standard formulae for actuarial functions using a constant force of mortality:

$$
\bar{a}_{x}=\frac{1}{\mu+\delta}=\frac{1}{0.005+0.02+0.035}=\frac{1}{0.06}=16.6667
$$

and: $\quad \bar{A}_{x}^{A}=\frac{\mu}{\mu+\delta}=\frac{0.005}{0.005+0.035}=0.125, \bar{A}_{x}^{N A}=\frac{\mu}{\mu+\delta}=\frac{0.02}{0.02+0.035}=0.36364$
We have:

$$
16.6667 P=100,000 \times 0.125+50,000 \times 0.36364 \Rightarrow P=1,840.91
$$

Solution 10.19

We know that Thiele's equation for this policy is:

$$
\frac{\partial}{\partial t} V={ }_{t} V \delta+P-\left(B_{2}-{ }_{t} V\right) \mu_{12}(t)-\left(B_{3}-{ }_{t} V\right) \mu_{13}(t)
$$

Substituting in the numerical values, we have:

$$
\frac{\partial}{\partial t}{ }_{t} V=0.035_{t} V+1,840.91-\left(100,000-{ }_{t} V\right) 0.005-\left(50,000-{ }_{t} V\right) 0.02
$$

or: $\quad \frac{\partial}{\partial t}{ }_{t} V=340.91+0.06_{t} V$
Rearranging:

$$
\frac{\partial}{\partial t} t V-0.06_{t} V=340.91
$$

Multiplying through by the integrating factor $e^{-0.06 t}$:

$$
\frac{\partial}{\partial t} V e^{-0.06 t}-0.06 e^{-0.06 t}{ }_{t} V=340.91 e^{-0.06 t}
$$

Integrating both sides of this equation:

$$
{ }_{t} V e^{-0.06 t}=-\frac{340.91}{0.06} e^{-0.06 t}+C
$$

Setting the reserve at time zero equal to zero, we find that $C=\frac{340.91}{0.06}=5,681.82$. So we have:

$$
{ }_{t} V=5,681.82\left(e^{0.06 t}-1\right)
$$

and the reserve at time 10 will be:

$$
{ }_{10} V=5,681.82\left(e^{0.6}-1\right)=4,671.13
$$

Solution 10.20

The rate of change of the reserve will be affected by:
(1) interest earned on the reserve: $+\delta_{t} V$
(2) the payment of death benefit: $-\mu S$
(3) the release of reserve no longer required on death: $+\mu_{t} V$
(4) premiums received: $+P$

So Thiele's equation for this policy is:

$$
\frac{\partial}{\partial t}{ }_{t} V=\delta_{t} V-\mu S+\mu_{t} V+P
$$

Substituting in the given numerical values:

$$
\frac{\partial}{\partial t}{ }_{t} V=0.03_{t} V-0.05+0.05_{t} V+P
$$

So we need to find the premium P. First we have:

$$
{ }_{10} E_{x}=e^{-0.05 \times 10} e^{-0.03 \times 10}=e^{-0.8}
$$

So:

$$
\bar{a}_{x: 10 \mid}=\bar{a}_{x}-{ }_{10} E_{x} \bar{a}_{x+10}=\frac{1}{0.08}-e^{-0.8} \times \frac{1}{0.08}=12.5\left(1-e^{-0.8}\right)=6.883388
$$

Similarly:

$$
\bar{A}_{x: \overline{10}}=\frac{0.05}{0.05+0.03}-e^{-0.8} \times \frac{0.05}{0.05+0.03}+e^{-0.8}=\frac{1}{8}\left(5+3 e^{-0.8}\right)=0.793499
$$

So the premium is:

$$
P=\frac{\bar{A}_{x: \overline{10}}}{\ddot{a}_{x: 10}}=0.11528
$$

We now have to solve the differential equation:

$$
\frac{\partial}{\partial t}{ }_{t} V=0.03_{t} V-0.05+0.05_{t} V+P
$$

Rearranging the equation:

$$
\frac{\partial}{\partial t} t V-0.08_{t} V=P-0.05
$$

The integrating factor is $e^{-\int 0.08 d t}=e^{-0.08 t}$. So multiplying through by this, we find that:

$$
\frac{\partial}{\partial t} t V e^{-0.08 t}-0.08 e^{-0.08 t}{ }_{t} V=(P-0.05) e^{-0.08 t}
$$

Integrating both sides of this equation:

$$
{ }_{t} V e^{-0.08 t}=\int(P-0.05) e^{-0.08 t} d t=\frac{P-0.05}{-0.08} e^{-0.08 t}+C
$$

Using the initial condition that the reserve will be zero at time zero, we find that $C=\frac{P-0.05}{0.08}$. So the expression for the reserve is:

$$
{ }_{t} V=\frac{P-0.05}{0.08}\left(e^{0.08 t}-1\right)
$$

Substituting in $P=0.11528$ and $t=3$, we find that:

$$
{ }_{3} V=0.22133
$$

