

Actuarial Models Second Edition By Michael A Gauger Published by BPP Professional Education

Solutions to practice questions - Chapter 4

Solution 4.1

Solution 4.2

$$
10,500 P+\frac{10,080 P}{1.05}=\frac{420 \times 5,025}{1.05}+\frac{441 \times 5,025}{1.05^{2}} \Rightarrow P=\frac{4,020,000}{20,100}=200
$$

Solution 4.3

Year	Beginning fund	Premium	Interest	Benefits	Ending fund
1	0	$2,100,000$	105,000	$2,110,500$	94,500
2	94,500	$2,016,000$	105,525	$2,216,025$	0

Solution 4.4

If the premium is zero, then the ending fund is calculated as below:

Year	Beginning fund	Premium	Interest	Benefits	Ending fund
1	0	0	0	$2,110,500$	$-2,110,500$
2	$-2,110,500$	0	$-105,525$	$2,216,025$	$-4,432,050$

If the premium is 1 , then the ending fund is determined as below:

Year	Beginning fund	Premium	Interest	Benefits	Ending fund
1	0	10,500	525	$2,110,500$	$-2,099,475$
2	$-2,099,475$	10,080	$-104,469.75$	$2,216,025$	$-4,409,889.75$

The linear function $E F(P)$ has slope m :

$$
m=\frac{-4,409,889.75+4,432,050}{1-0}=22,160.25
$$

Using the slope-intercept form of a linear equation we have:

$$
E F(P)=-4,432,050+22,160.25 P \quad, 0=E F(P) \Rightarrow P=\frac{4,432,050}{22,160.25}=200
$$

Solution 4.5

$$
\begin{aligned}
& \begin{array}{l}
\mu(x)=\mu=-\ln (0.98) \Rightarrow{ }_{k} p_{x}=e^{-\mu k}=0.98^{k}, q_{x+k}=0.02 \\
A_{x}=\sum_{k=0}^{\infty} v^{k+1}{ }_{k} \left\lvert\, q_{x}=\sum_{k=0}^{\infty} v^{k+1}{ }_{k} p_{x} q_{x+k}=\sum_{k=0}^{\infty} \frac{1}{1.05^{k+1}} \times 0.98^{k} \times 0.02\right. \\
\quad=\frac{0.02}{1.05}\left(1+\left(\frac{0.98}{1.05}\right)^{1}+\left(\frac{0.98}{1.05}\right)^{2}+\cdots\right) \quad(\text { geometric series }) \\
\quad=\frac{0.02}{1.05}\left(\frac{1}{1-0.98 / 1.05}\right)=\frac{0.02}{0.07} \Rightarrow \\
\ddot{a}_{x}=\frac{1-A_{x}}{d}=\frac{5 / 7}{5 / 105}=15 \\
1,000 P_{x}=\frac{1,000 A_{x}}{\ddot{a}_{x}}=\frac{2,000 / 7}{15}=19.04762
\end{array}
\end{aligned}
$$

Solution 4.6

For the semi-continuous plan we have:

$$
\begin{aligned}
& \bar{A}_{x}=\frac{\mu}{\mu+\delta}=\frac{-\ln (0.98)}{-\ln (0.98)+\ln (1.05)}=0.29282, \quad \ddot{a}_{x}=15 \quad \text { (Solution 4.5) } \Rightarrow \\
& 1,000 P\left(\bar{A}_{x}\right)=\frac{1,000 \bar{A}_{x}}{\ddot{a}_{x}}=\frac{292.82}{15}=19.52154
\end{aligned}
$$

Solution 4.7

The relation $\bar{A}_{x}=(i / \delta) A_{x}$ only holds when the UDD assumption holds. This assumption would require ${ }_{t} p_{x}$ to be a linear function of t when x is an integer age and $0<t<1$. But with the constant force model we would have ${ }_{t} p_{x}=0.98^{t}$, which is not linear in t.
Let's see how close to an answer the UUD law would have given if you had mistakenly applied it:

$$
(i / \delta) 1,000 P_{x}=(0.05 / \ln (1.05)) \times 19.04762=19.51994
$$

This is pretty close to the true value obtained in Solution 4.6.

Solution 4.8

$$
1,000{ }_{10} P\left(\bar{A}_{30: 35 \mid}^{1}\right)=\frac{1,000 \bar{A}_{30: 55 \mid}^{1}}{\ddot{a}_{30: \overline{10 \mid}}}
$$

Solution 4.9

$$
P \ddot{a}_{55: \overline{10}}=50,000_{10 \mid} \ddot{a}_{55}
$$

Solution 4.10

With de Moivre's law it is easy to calculate whole life insurance values from the formula $A_{x}=a \overline{\omega-x} /(\omega-x)$:

$$
\begin{aligned}
& A_{55}=\frac{a \overline{35}}{35}=\frac{16.37419}{35}=0.46783, \quad A_{65}=\frac{a \overline{25}}{25}=\frac{14.09394}{25}=0.56376 \Rightarrow \\
& \ddot{u}_{55}=11.17548 \quad, \quad \ddot{u}_{65}=9.16109
\end{aligned}
$$

The premium that we need to calculate is:

$$
\begin{aligned}
P & =\frac{50,000_{10 \mid} \ddot{a}_{55}}{\ddot{a}_{55: 10}}=\frac{50,000 v^{10}{ }_{10} p_{55} \ddot{a}_{65}}{\ddot{u}_{55}-v^{10}{ }_{10} p_{55} \ddot{a}_{65}} \\
& =\frac{50,000 \times(25 / 35) \times 9.16109 / 1.05^{10}}{11.17548-(25 / 35) 9.16109 / 1.05^{10}}=\frac{200,861.16}{7.15826}=28,060
\end{aligned}
$$

Solution 4.11

With the first 5 payments guaranteed, the annuity APV ${ }_{10} \mid \ddot{a}_{55}$ is replaced by:

$$
10 \mid \ddot{a}_{5 \mid}+{ }_{15 \mid} \ddot{a}_{55}
$$

So now we need to compute \ddot{a}_{70} as well:

$$
A_{70}=\frac{a_{20}}{20}=0.62311 \Rightarrow \ddot{a}_{70}=7.91468
$$

Finally, the new annual premium amount is:

$$
\begin{aligned}
P & =\frac{50,000\left(\ddot{a} \overline{15}-\ddot{a} \overline{10}+{ }_{15 \mid} \ddot{a}_{55}\right)}{\ddot{a}_{55: \overline{10}}}=\frac{50,000\left(\ddot{a} \overline{15}-\ddot{a} \overline{10}+v^{15}{ }_{15} p_{55} \ddot{a}_{70}\right)}{\ddot{a}_{55}-v^{10}{ }_{10} p_{55} \ddot{a}_{65}} \\
& =\frac{50,000\left(2.79082+(20 / 35) \times 7.91468 / 1.05^{15}\right)}{7.15826}=\frac{248,315.13}{7.15826}=34,689
\end{aligned}
$$

Solution 4.12

(i) $1,000 P^{(2)}\left(\bar{A}_{40}\right)=\frac{1,000 \bar{A}_{40}}{\ddot{a}_{40}^{(2)}}=\frac{1,000 A_{40}(i / \delta)}{\alpha(2) \ddot{a}_{40}-\beta(2)}=\frac{161.32(0.06 / \ln (1.06))}{1.00021 \times 14.8166-0.25739}=11.40701$
(ii)

$$
\begin{aligned}
1,000{ }_{10} P^{(2)}\left(\bar{A}_{40}\right) & =\frac{1,000 \bar{A}_{40}}{\ddot{a}_{40: \overline{10}}^{(2)}}=\frac{1,000 A_{40}(i / \delta)}{\alpha(2) \ddot{a}_{40: \overline{10}}-\beta(2)\left(1-v^{10}{ }_{10} p_{40}\right)} \\
& =\frac{161.32(0.06 / \ln (1.06))}{1.00021 \times(14.8166-0.53667 \times 13.2668)-0.25739(1-0.53667)}=21.9173
\end{aligned}
$$

Solution 4.13

Apply the equivalence principle. Suppose that P is the level annual premium rate and assume UDD:

$$
\begin{aligned}
& P \ddot{a}_{40}=1,000 \bar{A}_{40}+1,000{ }_{10} \bar{A}_{40} \Rightarrow \\
& P=\frac{1,000 \bar{A}_{40}+1,000{ }_{10} \mid \bar{A}_{40}}{\ddot{a}_{40}}=\frac{i}{\delta} \times \frac{1,000 A_{40}+v^{10}{ }_{10} p_{40} \times 1,000 A_{50}}{\ddot{a}_{40}} \\
&=\frac{0.06}{\ln (1.06)} \times \frac{161.32+0.53667 \times 249.05}{14.8166}=20.50005
\end{aligned}
$$

Solution 4.14

$$
\begin{aligned}
& P\left(\ddot{a}_{40}+{ }_{10} \ddot{a}_{40}\right)=1,000 \bar{A}_{40}+1,000{ }_{10} \bar{A}_{40} \Rightarrow \\
& P=\frac{1,000 \bar{A}_{40}+1,000{ }_{10} \mid \bar{A}_{40}}{\ddot{a}_{40}+{ }_{10} \ddot{a}_{40}}=\frac{i}{\delta} \times \frac{1,000 A_{40}+v^{10}{ }_{10} p_{40} \times 1,000 A_{50}}{\ddot{a}_{40}+v^{10}{ }_{10} p_{40} \ddot{a}_{50}} \\
&=\frac{0.06}{\ln (1.06)} \times \frac{161.32+0.53667 \times 249.05}{14.8166+0.53667 \times 13.2668}=13.84638
\end{aligned}
$$

Solution 4.15

Let $K=K(40)$:

$$
\begin{aligned}
L & =1,000 \times\left\{\begin{array}{cc}
v^{K+1} & \text { if } K \leq 9 \\
v^{10} & \text { if } K \geq 10
\end{array}-P \times\left\{\begin{array}{cc}
\ddot{a}_{\overline{K+1}} & \text { if } K \leq 9 \\
\ddot{a}_{\overline{10}} & \text { if } K \geq 10
\end{array}\right.\right. \\
& = \begin{cases}1,000 v^{K+1}-P \ddot{a}_{\overline{K+1}} & \text { if } K \leq 9 \\
1,000 v^{10}-P \ddot{a}_{\overline{10}} & \text { if } K \geq 10\end{cases}
\end{aligned}
$$

Solution 4.16

$$
\begin{aligned}
E[L] & =1,000 A_{40: \overline{10}}-80 \ddot{a}_{40: \overline{10}} \\
& =\left(1,000 A_{40}-v^{10}{ }_{10} p_{40} 1,000 A_{50}+1,000 v^{10}{ }_{10} p_{40}\right)-80\left(\ddot{a}_{40}-v^{10}{ }_{10} p_{40} \ddot{a}_{50}\right) \\
& =564.34-80 \times 7.69671=-51.40
\end{aligned}
$$

Solution 4.17

For an insurance of 1 , the variance of the loss function at issue $\left(L_{1}\right)$ using the formula from Section 4.5 of the text:

$$
\operatorname{var}\left(L_{1}\right)=\left(1-E\left[L_{1}\right]\right)^{2}\left(\frac{{ }^{2} A_{40: \overline{10 \mid}}-\left(A_{40: \overline{10}}\right)^{2}}{\left(1-A_{40: \overline{10}}\right)^{2}}\right)
$$

If the benefit were 1 and the premium were $80 / 1,000$, then $E\left[L_{1}\right]=-51.39914 / 1,000=-0.05140$. Obtain the variance on a unit basis using the formula above. Then multiply by $1,000^{2}$ to obtain variance if the benefit is 1,000.

$$
\begin{aligned}
A_{40: \overline{10}}= & 0.56434 \quad(\text { Solution 4.16) } \\
{ }^{2} A_{40: 10 \mid} & =\left({ }^{2} A_{40}-v^{20}{ }_{10} p_{40}{ }^{2} A_{50}\right)+v^{20}{ }_{10} p_{40} \\
& =\left(0.04863-\frac{0.53667}{1.066^{10}} \times 0.09476\right)+\frac{0.53667}{1.066^{10}}=0.31991 \\
\operatorname{var}\left(L_{1}\right) & =\left(1-E\left[L_{1}\right]\right)^{2} \frac{{ }^{2} A_{40: \overline{10}}-\left(A_{40: 10 \mid}\right)^{2}}{\left(1-A_{40: 101}\right)^{2}}=1.05140^{2} \times\left(\frac{0.31991-0.56434^{2}}{(1-0.56434)^{2}}\right)=0.00833
\end{aligned}
$$

Multiply this variance by $1,000^{2}: \operatorname{var}(L)=\operatorname{var}\left(1,000 L_{1}\right)=1,000^{2} \times 0.00833=8,330$
Note: Your answer may differ slightly, depending on the intermediate rounding you've applied

Solution 4.18

With de Moivre's law we have:

$$
\bar{A}_{40}=\frac{\bar{a} \overline{60}}{60}=0.27019 \quad, \quad \bar{a}_{40}=\frac{1-\bar{A}_{40}}{\delta}=12.16354 \quad, \quad \bar{P}\left(\bar{A}_{40}\right)=0.02221
$$

The insurer's loss function at issue is:

$$
L=e^{-\delta T(40)}-\bar{P}\left(\bar{A}_{40}\right) \bar{a} \overline{T(40)}=\left(1+\frac{\bar{P}\left(\bar{A}_{40}\right)}{\delta}\right) e^{-\delta T(40)}-\frac{\bar{P}\left(\bar{A}_{40}\right)}{\delta}
$$

The loss is positive if the following relation holds:

$$
T(40)<-\frac{1}{\delta} \ln \left(\frac{\bar{P}\left(\bar{A}_{40}\right)}{\bar{P}\left(\bar{A}_{40}\right)+\delta}\right)=21.81063
$$

The probability of this event is:

$$
\operatorname{Pr}(T(40)<21.81063)=\int_{0}^{21.81063} f_{T(40)}(t) d t=\int_{0}^{21.81063} \frac{1}{60} d t=\frac{21.81063}{60}=0.36351
$$

Solution 4.19

The loss function is a decreasing function of $T(40)$, so it flips the percentiles. Since we are looking for the median value, we merely need to plug $T=t_{0.5}$ into the loss function formula.

The future lifetime is uniformly distributed on the interval $[0,60]$. The median value is $t_{0.5}=30$. So the median value of the loss function is:

$$
L=\left(1+\frac{\bar{P}\left(\bar{A}_{40}\right)}{\delta}\right) e^{-\delta T(40)}-\frac{\bar{P}\left(\bar{A}_{40}\right)}{\delta}=\left(1+\frac{0.02221}{0.06}\right) e^{-0.06 \times 30}-\frac{0.02221}{0.06}=-0.14372
$$

Solution 4.20

The annual premium amount is $P=1 / \bar{s} \overline{t_{0.2}}$ where $t_{0.2}$ is the 20th percentile of future lifetime. (See Example 4.13):

$$
\begin{aligned}
& 0.2=\operatorname{Pr}\left(T(x) \leq t_{0.2}\right) \Rightarrow 0.8=t_{0.2} p_{x}=e^{-\mu t_{0.2}} \Rightarrow t_{0.2}=-\ln (0.8) / \mu \\
& \bar{s}_{\overline{t_{0.2}}}=\frac{e^{\delta t_{0.2}}-1}{\delta}=\frac{e^{-\ln (0.8) \delta / \mu}-1}{\delta}=\frac{1.25^{\delta / \mu}-1}{\delta} \\
& P=\frac{1}{\bar{s}_{\overline{t_{0.2}}}}=\frac{\delta}{1.25^{\delta / \mu}-1}
\end{aligned}
$$

