

Actuarial models

Solutions to practice questions - Chapter 9

Solution 9.1

$$
\begin{aligned}
& M_{X}(t)=(1-10 t)^{-2} \Rightarrow M_{X}^{\prime}(t)=20(1-10 t)^{-3}, M_{X}^{\prime \prime}(t)=600(1-10 t)^{-4} \\
& E[X]=M_{X}^{\prime}(0)=20, E\left[X^{2}\right]=M_{X}^{\prime \prime}(0)=600, \operatorname{var}(X)=600-20^{2}=200
\end{aligned}
$$

Solution 9.2

$$
\begin{aligned}
M_{N}(t) & =E\left[e^{t N}\right]=\sum_{k=0}^{4} e^{t k} \operatorname{Pr}(N=k)=\sum_{k=0}^{4} e^{t k}\binom{4}{k} 0.7^{k} 0.3^{4-k} \\
& =\sum_{k=0}^{4}\binom{4}{k}\left(0.7 e^{t}\right)^{k} 0.3^{4-k}=\left(0.7 e^{t}+0.3\right)^{4}
\end{aligned}
$$

binomial theorem: $(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}$
$P_{N}(t)=M_{N}(\ln (t))=\left(0.7 e^{\ln (t)}+0.3\right)^{4}=(0.7 t+0.3)^{4}$

Solution 9.3

$$
P_{N_{1}+N_{2}}(t)=E\left[t^{N_{1}+N_{2}}\right]=E\left[t^{N_{1}}\right] E\left[t^{N_{2}}\right]=P_{N_{1}}(t) P_{N_{2}}(t)=(0.7 t+0.3)^{8}
$$

Solution 9.4

The possible values of $X_{1}+X_{2}+X_{3}+X_{4}$ are: $4,5,6,7,8$. Here are the first few probabilities:

$$
\begin{aligned}
& f_{X}^{* 4}(4)=f_{X}^{* 3}(3) f_{X}(1)=0.2401 \\
& f_{X}^{* 4}(5)=f_{X}^{* 3}(3) f_{X}(2)+f_{X}^{* 3}(4) f_{X}(1)=0.4116
\end{aligned}
$$

We leave it to the reader to check the following:

$$
f_{X}^{* 4}(6)=0.2646, f_{X}^{* 4}(7)=0.0756, f_{X}^{* 4}(8)=0.0081
$$

Solution 9.5

We have $S=X_{1}+\cdots+X_{100}$ where the various X_{i} are independent and identically distributed like X :

$$
\begin{aligned}
& f_{X}(x)= \begin{cases}0.80 & x=0 \text { (discrete part) } \\
0.20 / 1900 & 100 \leq x \leq 2000 \text { (continuous part) }\end{cases} \\
& E\left[X^{k}\right]=0.8 \times 0^{k}+0.2 \int_{100}^{2,000} x^{k} \frac{1}{1,900} d x=0.2\left(\frac{2,000^{k+1}-100^{k+1}}{1,900(k+1)}\right) \Rightarrow \\
& E[X]=210, E\left[X^{2}\right]=280,666.66, \operatorname{var}(X)=236,566.67
\end{aligned}
$$

Now move up to the aggregate level:

$$
\begin{aligned}
& E[S]=100 E[X]=21,000 \\
& \operatorname{var}(S)=100 \operatorname{var}(X)=23,656,666.67 \\
& 95-\text { th percentile }=E[S]+1.645 \sqrt{\operatorname{var}(S)}=29,001
\end{aligned}
$$

Solution 9.6

Let Y be the height and let I be an indicator for the sex of an individual:

$$
I=\left\{\begin{array}{ll}
0 & \text { male } \\
1 & \text { female }
\end{array}, \text { where } \operatorname{Pr}(I=0)=0.45, \operatorname{Pr}(I=1)=0.55\right.
$$

The given data can be interpreted as being conditional means and variances for the two groups:

$I=i$	$\operatorname{Pr}(I=i)$	$E[Y \mid I=i]$	$\operatorname{var}(Y \mid I=i)$
0	0.45	70	$4^{2}=16$
1	0.55	67	$3^{2}=9$

Now apply the double expectation theorem:

$$
\begin{aligned}
& E[Y]=E[E[Y \mid I]]=0.45 \times 70+0.55 \times 67=68.35 \\
& E[\operatorname{var}(Y \mid I)]=0.45 \times 16+0.55 \times 9=12.15 \\
& \operatorname{var}(E[Y \mid I])=E\left[(E[Y \mid I])^{2}\right]-(E[E[Y \mid I]])^{2} \\
& \quad=0.45 \times 70^{2}+0.55 \times 67^{2}-68.35^{2}=2.22750 \\
& \quad \operatorname{var}(Y)=12.15+2.22750=14.3775
\end{aligned}
$$

Solution 9.7

IRM: $\quad X_{1}=140+30=170, \quad X_{2}=57+90=147, \quad X_{3}=0, \quad X_{4}=100$
$S=X_{1}+X_{2}+X_{3}+X_{4}=417$
CRM: $N=5, Y_{1}=57, Y_{2}=100, Y_{3}=90, Y_{4}=140, \Upsilon_{5}=30$
$S=Y_{1}+\cdots+Y_{N}=Y_{1}+\cdots+Y_{5}=417$

Solution 9.8

$$
\begin{aligned}
& E[N]=\operatorname{var}(N)=\lambda=5, E[Y]=\theta=1 / 0.002=500, \operatorname{var}(Y)=\theta^{2}=250,000 \\
& E[S]=E[N] E[Y]=5 \times 500=2,500 \\
& \operatorname{var}(S)=E[N] \operatorname{var}(Y)+(E[Y])^{2} \operatorname{var}(N)=2,500,000 \\
& M_{N}(t)=e^{\lambda\left(e^{t}-1\right)}=e^{5\left(e^{t}-1\right)}, M_{Y}(t)=(1-\theta t)^{-1}=(1-500 t)^{-1} \\
& \Rightarrow M_{S}(t)=M_{N}\left(\ln \left(M_{Y}(t)\right)\right)=e^{5\left(M_{Y}(t)-1\right)}=e^{5\left((1-500 t)^{-1}-1\right)} \text { for } t<1 / 500
\end{aligned}
$$

$$
\operatorname{Pr}(S=0)=\operatorname{Pr}(N=0)=e^{-5} \text { since } Y \text { is continuous }
$$

Solution 9.9

$$
Y= \begin{cases}0 & \text { if } X \leq 50 \\ 0.8(X-50) & \text { if } 50<X \leq 675 \\ 500 & \text { if } 675<X\end{cases}
$$

since $500=0.8(X-50)$ when $X=675$.

Solution 9.10

From the formula in Solution 9.9, we have:

$$
F_{Y}(y)=\operatorname{Pr}(Y \leq y)=0 \quad \text { when } y<0
$$

For y in the range $[0,500)$, we have:

$$
\begin{aligned}
F_{Y}(y) & =\operatorname{Pr}(Y \leq y)=\operatorname{Pr}(0.8(X-50) \leq y)=\operatorname{Pr}(X \leq 1.25 y+50) \\
& =\int_{0}^{1.25 y+50} \frac{2(1,000-x)}{1,000^{2}} d x=1-\left(\frac{760-y}{800}\right)^{2}
\end{aligned}
$$

For $y \geq 500$ we have:

$$
F_{Y}(y)=1
$$

since the largest possible value of Y is 500 .
Here is the graph:

Solution 9.11

The discrete part is concentrated at the jump discontinuities:

$$
f_{Y}(y)= \begin{cases}1-\left(\frac{760}{800}\right)^{2}=0.09750 & \text { when } y=0 \quad \text { (discrete part) } \\ \left(\frac{260}{800}\right)^{2}=0.10563 & \text { when } y=500 \text { (discrete part) } \\ F^{\prime}(y)=\frac{2(760-y)}{800^{2}} & \text { when } 0<y<500 \text { (continuous part) }\end{cases}
$$

Solution 9.12

$$
\begin{aligned}
E[Y] & =0 \times(0.09750)+500 \times(0.10563)+\int_{0}^{500} y \times \frac{2(760-y)}{800^{2}} d y \\
& =52.81250+\left.\left(\frac{\left(760 y^{2}-2 y^{3} / 3\right)}{800^{2}}\right)\right|_{0} ^{500}=52.81250+166.67=219.48
\end{aligned}
$$

Solution 9.13

$$
\begin{aligned}
E[Y] & =\int_{0}^{50} 0 \times f_{X}(x) d x+\int_{50}^{675} 0.8(x-50) f_{X}(x) d x+\int_{675}^{1,000} 500 f_{X}(x) d x \\
& =\int_{50}^{675} 0.8(x-50) \times \frac{2(1,000-x)}{1,000^{2}} d x+\int_{675}^{1,000} 500 \times \frac{2(1,000-x)}{1,000^{2}} d x \\
& =\int_{0}^{500} u \times \frac{2(760-u)}{800^{2}} d u+500 \times\left(\frac{325}{1,000}\right)^{2}(\text { substitute } u=0.8(x-50)) \\
& =\frac{760 \times 500^{2}-2 \times 500^{3} / 3}{800^{2}}+500 \times\left(\frac{325}{1,000}\right)^{2}=219.48
\end{aligned}
$$

Solution 9.14

The conditional densities are uniform:

$$
f_{X}(x \mid M=m)=\frac{1}{m} \text { for } 0 \leq x \leq m
$$

The marginal density function for M is:

$$
f_{M}(1,000)=0.75, f_{M}(2,000)=0.25
$$

So the marginal density function for a randomly selected loss is:

$$
\begin{aligned}
f_{X}(x) & =\sum_{m} f_{X, M}(x, m)=\sum_{m} f_{M}(m) f_{X}(x \mid m) \\
& =0.75 f_{X}(x \mid m=1,000)+0.25 f_{X}(x \mid m=2,000) \\
& =0.75 \times\left\{\begin{array}{ll}
0.001 & \text { when } 0 \leq x \leq 1,000 \\
0 & \text { otherwise }
\end{array}+0.25 \times\left\{\begin{array}{cl}
0.0005 & \text { when } 0 \leq x \leq 2,000 \\
0 & \text { otherwise }
\end{array}\right.\right. \\
& = \begin{cases}0.000875 & \text { when } 0 \leq x \leq 1,000 \\
0.000125 & \text { when } 1,000<x \leq 2000\end{cases}
\end{aligned}
$$

Solution 9.15

We are given that $X \mid M=m$ is uniform on the interval $[0, m]$. Also, the distribution of M is:

$$
\operatorname{Pr}(M=1,000)=0.75 \text { and } \operatorname{Pr}(M=2,000)=0.25
$$

As a result, we have:

$$
E\left[X^{k} \mid M=m\right]=\int_{0}^{m} x^{k} \cdot \frac{1}{m} d x=\frac{m^{k}}{k+1}
$$

So the conditional mean and conditional variance are:

$$
E[X \mid M]=\frac{M}{2} \quad, \quad \operatorname{var}(X \mid M)=\frac{M^{2}}{3}-\left(\frac{M}{2}\right)^{2}=\frac{M^{2}}{12}
$$

Now apply the double expectation theorem:
(i) $\quad E[X]=E[E[X \mid M]]=E\left[\frac{M}{2}\right]=\frac{1,000 \times 0.75+2,000 \times 0.25}{2}=625$
(ii) $\operatorname{var}(X)=E[\operatorname{var}(X \mid M)]+\operatorname{var}(E[X \mid M])$

$$
\begin{aligned}
& =E\left[\frac{M^{2}}{12}\right]+\operatorname{var}\left(\frac{M}{2}\right)=\frac{E\left[M^{2}\right]}{12}+\frac{E\left[M^{2}\right]-(E[M])^{2}}{4} \\
& =\frac{4 E\left[M^{2}\right]-3(E[M])^{2}}{12} \\
& =\frac{4\left(1,000^{2} \times 0.75+2,000^{2} \times 0.25\right)-3 \times(1,000 \times 0.75+2,000 \times 0.25)^{2}}{12} \\
& =192,708.33
\end{aligned}
$$

Solution 9.16

We have:

$$
\begin{aligned}
\operatorname{Pr}(N & \geq 2)=1-\underbrace{\operatorname{Pr}(N=0)}_{\begin{array}{c}
0.56356 \\
\text { Ex. 9.15 }
\end{array}}-\underbrace{\operatorname{Pr}(N=1)}_{\begin{array}{c}
0.30840 \\
\text { below }
\end{array}}=0.12804 \\
f_{N}(1) & =\int f_{N, \Theta}(1, \theta) d \theta=\int f_{\Theta}(\theta) f_{N}(1 \mid \Theta=\theta) d \theta \\
& =\int_{0.2}^{1.0} \frac{1}{0.8} e^{-\theta} \theta d \theta=\left.\left(-1.25\left(e^{-\theta}(1+\theta)\right)\right)\right|_{0.2} ^{1.0}=0.30840
\end{aligned}
$$

Solution 9.17

Using the method of transformations, we have:

$$
\begin{aligned}
& y=x^{-1} \Rightarrow x=y^{-1} \Rightarrow \frac{d x}{d y}=-\frac{1}{y^{2}} \\
& f_{X}(x)=\frac{e^{-x / 50}}{50} \text { for } x>0 \\
& f_{Y}(y)=f_{X}\left(y^{-1}\right)\left|\frac{d x}{d y}\right|=\frac{e^{-1 / 50 y}}{50 y^{2}} \text { for } y>0
\end{aligned}
$$

Solution 9.18

For the spliced distribution, we have:

$$
\begin{aligned}
f(x) & = \begin{cases}0.8 f_{1}(x) & \text { when } 0<x \leq 1,000 \\
0.2 f_{2}(x) & \text { when } x>1,000\end{cases} \\
& = \begin{cases}0.0008 \text { when } 0<x \leq 1,000 \\
\frac{0.4 \times 1,000^{2}}{x^{3}} & \text { when } x>1,000\end{cases} \\
E[X] & =\int_{0}^{1,000} 0.0008 x d x+\int_{1,000}^{\infty} \frac{0.4 \times 1,000^{2} x}{x^{3}} d x \\
& =400+\left.\left(-\frac{400,000}{x}\right)\right|_{1,000} ^{\infty}=400+400=800
\end{aligned}
$$

Solution 9.19

Since $Y=X \mid X>100$, we have:

$$
\begin{aligned}
f_{Y}(y) & =\frac{f_{X}(y)}{\operatorname{Pr}(X>100)} \text { for } 100<y<\infty \\
& =\frac{e^{-y / 500} / 500}{e^{-100 / 500}} \text { for } 100<y<\infty \\
& =\frac{\exp \left(-\left(\frac{y-100}{500}\right)\right)}{500} \text { for } 100<y<\infty
\end{aligned}
$$

The expected value could be computed in several ways:

- $E[Y]=\int_{100}^{\infty} y \exp \left(-\left(\frac{y-100}{500}\right)\right) d y / 500$
- $\begin{aligned} Y & =X \left\lvert\, X>100=\underbrace{(Y-100) \mid X>100}_{\begin{array}{c}\text { exponential with mean } \\ 500 \text { due to memoryless } \\ \text { property of exponentials }\end{array}}+100\right. \\ & \Rightarrow E[Y]=500+100=600\end{aligned}$

Solution 9.20

The pdf is:

$$
\begin{aligned}
f_{Y}(y) & = \begin{cases}f_{X}(y) & \text { when } y<1,000 \\
s_{X}(1,000) & \text { when } y=1,000 \text { (discrete part) }\end{cases} \\
& = \begin{cases}\frac{e^{-y / 500}}{500} & \text { when } y<1,000 \\
e^{-1,000 / 500} & \text { when } y=1,000 \text { (discrete part) }\end{cases}
\end{aligned}
$$

The expected value could be obtained by evaluating the integral:

$$
E[Y]=\int_{0}^{1,000} y \frac{e^{-y / 500}}{500} d y+1,000 e^{-2}
$$

In life contingencies this expected value is the same as:

$$
\begin{aligned}
\stackrel{\circ}{e}_{0: \overline{1,000}} & =\int_{0}^{1,000} s_{X}(x) d x=\int_{0}^{1,000} e^{-x / 500} d x=\left.\left(-500 e^{-x / 500}\right)\right|_{0} ^{1,000} \\
& =500\left(1-e^{-2}\right)=432.33
\end{aligned}
$$

