

Actuarial models

By Michael A Gauger

Published by BPP Professional Education

Solutions to practice questions - Chapter 7

Solution 7.1

Survival for a period of time means remaining a member of the group for this period, in other words, avoiding all the modes of decrement.

Solution 7.2

(i)
$$_{2}p_{26}^{(\tau)} = \frac{l_{28}^{(\tau)}}{l_{26}^{(\tau)}} = \frac{919}{950}$$

(ii)
$$2q_{25}^{(\tau)} = \frac{d_{25}^{(\tau)} + d_{26}^{(\tau)}}{l_{25}^{(\tau)}} = \frac{50 + 14}{1,000}$$

(iv)
$$_{2}q_{26}^{(1)} = \frac{d_{26}^{(1)} + d_{27}^{(1)}}{l_{26}^{(\tau)}} = \frac{8+9}{950}$$

Solution 7.3

From the formulas for the force functions, we have:

$$\mu^{(i)}(x+t) = \frac{r_i}{20-t} \implies {}_t p_x^{\prime(i)} = \exp\left(-\int_0^t \frac{r_i}{20-s} ds\right) = \left(\frac{20-t}{20}\right)^{r_i} \text{ for } 0 \le t < 20$$

$$\textbf{Cause 1, r_1 = 1}$$

$${}_t p_x^{\prime(1)} = \frac{20-t}{20} \quad , \quad f_{T_1}(t) = {}_t p_x^{\prime(1)} \mu^{(1)}(x+t) = \frac{20-t}{20} \times \frac{1}{20-t} = \frac{1}{20} \text{ and}$$

$${}_t q_x^{\prime(1)} = F_{T_1}(t) = \frac{t}{20} \quad \text{for } 0 \le t < 20$$

Cause 2,
$$r_2 = 0.5$$

$${}_{t}p_{x}^{\prime(2)} = \left(\frac{20-t}{20}\right)^{0.5} , \ f_{T_{2}}(t) = {}_{t}p_{x}^{\prime(2)} \mu^{(2)}(x+t) = \left(\frac{20-t}{20}\right)^{0.5} \times \frac{0.5}{20-t} = \frac{1}{\sqrt{80(20-t)}} \text{ and }$$

$${}_{t}q_{x}^{\prime(2)} = F_{T_{2}}(t) = 1 - \left(\frac{20-t}{20}\right)^{0.5} \text{ for } 0 \le t < 20$$

$$q_x^{\prime(1)} = \frac{1}{20} = 0.05000$$
 , $q_x^{\prime(2)} = 1 - \left(\frac{20 - 1}{20}\right)^{0.5} = 0.02532$

Solution 7.5

The joint density function is not a probability, but $f_{T,J}(t,j)dt$ is approximately the probability that life (x) departs the group between times t and t+dt as a result of cause j.

Solution 7.6

The waiting time variables T_1, \dots, T_r are assumed to be independent. Since T is the minimum of these waiting times, the event T > t is the intersection of the independent events $T_i > t$. As a result, we have:

$$_{t}p_{x}^{(\tau)} = \Pr(T > t) = \Pr(T_{1} > t) \cdots \Pr(T_{r} > t) = {}_{t}p_{x}^{\prime(1)} \cdots {}_{t}p_{x}^{\prime(r)}$$

So for the pair of forces in Question 7.3, we have:

$$_{t}p_{x}^{(\tau)} = \left(\frac{20-t}{20}\right) \times \left(\frac{20-t}{20}\right)^{0.5} = \left(\frac{20-t}{20}\right)^{1.5} \quad \text{for } 0 \le t \le 20$$

Solution 7.7

$$f_{T,J}(t,j) = {}_{t}p_{x}^{(\tau)} \mu^{(j)}(x+t) \Rightarrow$$

$$f_{T,J}(t,1) = {}_{t}p_{x}^{(\tau)} \mu^{(1)}(x+t) = \left(\frac{20-t}{20}\right)^{1.5} \frac{1}{20-t} = \frac{(20-t)^{0.5}}{20^{1.5}} \quad \text{for } 0 \le t \le 20$$

$$f_{T,J}(t,2) = {}_{t}p_{x}^{(\tau)} \mu^{(2)}(x+t) = \left(\frac{20-t}{20}\right)^{1.5} \frac{0.5}{20-t} = \frac{(20-t)^{0.5}}{2 \times 20^{1.5}} \quad \text{for } 0 \le t \le 20$$

$$\int_{0}^{20} f_{T,J}(t,1)dt + \int_{0}^{20} f_{T,J}(t,2)dt = \int_{0}^{20} \frac{1.5(20-t)^{0.5}}{20^{1.5}}dt = -\frac{(20-t)^{1.5}}{20^{1.5}}\bigg|_{0}^{20} = 0 + 1 = 1$$

Solution 7.9

$$\begin{split} q_x^{(1)} &= \Pr \left(T \leq 1 \; , \; J = 1 \right) = \; \int_0^1 f_{T,J} \left(t, 1 \right) dt \\ &= \int_0^1 \frac{\left(20 - t \right)^{0.5}}{20^{1.5}} \; dt = - \frac{\left(20 - t \right)^{1.5}}{1.5 \times 20^{1.5}} \bigg|_0^1 = \frac{1}{1.5} \left(1 - \left(\frac{19}{20} \right)^{1.5} \right) = 0.04937 \\ q_x^{(2)} &= \Pr \left(T \leq 1 \; , \; J = 2 \right) = \; \int_0^1 f_{T,J} \left(t, 2 \right) dt \\ &= \int_0^1 \frac{0.5 \left(20 - t \right)^{0.5}}{20^{1.5}} \; dt = - \frac{0.5 \left(20 - t \right)^{1.5}}{1.5 \times 20^{1.5}} \bigg|_0^1 = \frac{0.5}{1.5} \left(1 - \left(\frac{19}{20} \right)^{1.5} \right) = 0.02468 \\ q_x^{(1)} &+ \; q_x^{(2)} = 0.04937 \; + 0.02468 = 0.07405 \\ q_x^{\prime (1)} &+ \; q_x^{\prime (2)} - \; q_x^{\prime (1)} \; q_x^{\prime (2)} = 0.05000 \; + 0.02532 - 0.05000 \times 0.02532 = 0.07405 \end{split}$$

Solution 7.10

$$\mathring{e}_{x}^{(\tau)} = \int_{0}^{\infty} t p_{x}^{(\tau)} dt = \int_{0}^{20} \left(\frac{20 - t}{20} \right)^{1.5} dt = -\frac{(20 - t)^{2.5}}{2.5 \times 20^{1.5}} \bigg|_{0}^{20} = -0 + \frac{20}{2.5} = 8$$

Solution 7.11

$$\Pr(J=1) = \int_{0}^{20} f_{T,J}(t,1) dt = \int_{0}^{20} \frac{(20-t)^{0.5}}{20^{1.5}} dt = -\frac{(20-t)^{1.5}}{1.5 \times 20^{1.5}} \bigg|_{0}^{20} = -0 + \frac{1}{1.5} = \frac{2}{3}$$

$$\Pr(J=2) = \int_{0}^{20} f_{T,J}(t,2) dt = \int_{0}^{20} \frac{0.5(20-t)^{0.5}}{20^{1.5}} dt = -\frac{0.5(20-t)^{1.5}}{1.5 \times 20^{1.5}} \bigg|_{0}^{20} = -0 + \frac{0.5}{1.5} = \frac{1}{3}$$

We could have also done this without integration:

$$\Pr(J=1 \mid T=t) = \frac{\mu^{(1)}(x+t)}{\mu^{(\tau)}(x+t)} = \frac{1/(20-t)}{1.5/(20-t)} = \frac{2}{3} \text{ for } 0 \le t < 20$$

$$\Rightarrow T \text{ and } J \text{ are independent } \Rightarrow \Pr(J=1) = \Pr(J=1 \mid T=t) = \frac{2}{3}$$

From the table we have:

$$q_x^{(1)} = \frac{4}{100} = 0.04$$
 , $q_x^{(2)} = \frac{6}{100} = 0.06$

The SUDD relations are:

$$0.04 = q_x^{(1)} = q_x'^{(1)} \left(1 - 0.5 q_x'^{(2)} \right)$$

$$0.06 = q_x^{(2)} = q_x'^{(2)} \left(1 - 0.5 q_x'^{(1)} \right)$$

Let's try the iterative approach:

$$q_x^{\prime(1)} = \frac{0.04}{1 - 0.5 q_x^{\prime(2)}} , \quad q_x^{\prime(2)} = \frac{0.06}{1 - 0.5 q_x^{\prime(1)}}$$

$$q_x^{\prime(2)} = 0.06 \implies q_x^{\prime(1)} = 0.041237 \implies q_x^{\prime(2)} = 0.061263 \implies q_x^{\prime(1)} = 0.041264$$

$$\implies q_x^{\prime(2)} = 0.061264 \implies q_x^{\prime(1)} = 0.041264 \implies q_x^{\prime(2)} = 0.061264$$

The 6-place stable results are: $q_x^{\prime(1)} = 0.041264$, $q_x^{\prime(2)} = 0.061264$

Solution 7.13

From the table we have:

$$q_x^{(1)} = \frac{4}{100} = 0.04$$
 , $q_x^{(1)} = \frac{6}{100} = 0.06$, $q_x^{(\tau)} = 0.10$, $p_x^{(\tau)} = 0.90$

The MUDD model results in:

$$q_x^{\prime(1)} = 1 - p_x^{\prime(1)} = 1 - \left(p_x^{(\tau)}\right)^{q_x^{(1)}/q_x^{(\tau)}} = 1 - (0.90)^{0.04/0.10} = 0.041268$$

$$q_x^{\prime(2)} = 1 - p_x^{\prime(2)} = 1 - \left(p_x^{(\tau)}\right)^{q_x^{(2)}/q_x^{(\tau)}} = 1 - (0.90)^{0.06/0.10} = 0.061260$$

Solution 7.14

SUDD
$$\Rightarrow t p_x^{(\tau)} = t p_x^{\prime(1)} t p_x^{\prime(2)} = (1 - 0.041264t)(1 - 0.061264t)$$

 $= 1 - 0.102528t + 0.002528t^2$
MUDD $\Rightarrow t p_x^{(\tau)} = 1 - t q_x^{(\tau)} = 1 - 0.10t$

Under the MUDD model we saw that:

$$f_{T,J}(t,j) = {}_{k|}q_x^{(j)}$$
 where $k = [t]$

$$\Rightarrow f_{T,J}(0.5,1) = {}_{0|}q_x^{(1)} = \frac{d_x^{(1)}}{l_x^{(\tau)}} = \frac{4}{100}$$

Solution 7.16

We have the following generally valid relation:

$$0.04 = q_x^{(1)} = \int_{-t} p_x^{\prime(2)} t p_x^{\prime(1)} \mu^{(1)}(x+t) dt$$

Since decrement (1) follows the SUDD model, we have:

$$_{t}q_{x}^{\prime(1)} = tq_{x}^{\prime(1)} \implies _{t}p_{x}^{\prime(1)}\mu^{(1)}(x+t) = q_{x}^{\prime(1)} \text{ for } 0 \le t \le 1$$

For decrement (2) we have:

$$_{t}p_{x}^{\prime(2)} = \left(p_{x}^{\prime(2)}\right)^{t}$$

Substituting these results into the first equation results in the relation:

$$0.04 = q_x^{(1)} = \int_0^1 t p_x'^{(2)} t p_x'^{(1)} \mu^{(1)}(x+t) dt = \int_0^1 q_x'^{(1)} \left(p_x'^{(2)} \right)^t dt$$
$$= q_x'^{(1)} \left(-\frac{1 - p_x'^{(2)}}{\ln(p_x'^{(2)})} \right) = -\frac{q_x'^{(1)} q_x'^{(2)}}{\ln(1 - q_x'^{(2)})}$$

Solution 7.17

By the discrete time method, we have:

$$0.06 = q_x^{(2)} = \sum_{\substack{0 \le t_k \le 1 \\ \Pr\left(T_2 = t_k\right) \ne 0}} \left(\prod_{j \ne 2} t_k p_x'^{(j)}\right) \Pr\left(T_2 = t_k\right) = \left(1 - 0.5 q_x'^{(1)}\right) \Pr\left(T_2 = 0.5\right) = \left(1 - 0.5 q_x'^{(1)}\right) q_x'^{(2)}$$

We also have the generally valid relation:

$$0.10 = q_x^{(1)} + q_x^{(2)} = q_x'^{(1)} + q_x'^{(2)} - q_x'^{(1)} q_x'^{(2)}$$

If you subtract the first relation from the generally valid relation, then you will have 2 relations that are identical to the relations that result if both decrements follow the SUDD model. So the result will be the same as in Ouestion 7.12.

Solution 7.18

The random present value variable for the benefit is:

$$Z = \begin{cases} 1,000e^{-0.05T} & J = 1\\ 2,000e^{-0.05T} & J = 2 \end{cases}$$

From the force formulas we can calculate the joint pdf $f_{T,J}(t,j)$:

$$\mu_{30}^{(1)}(t) = \frac{1}{60-t}$$
 for $0 \le t < 60 \implies {}_t p_x'^{(1)} = \frac{60-t}{60}$ for $0 \le t < 60$ (zero otherwise) $\mu_{30}^{(2)}(t) = 0.01$ for $t > 0 \implies {}_t p_x'^{(2)} = e^{-0.01t}$

$$f_{T,J}(t,1) = {}_{t}p_{x}^{(\tau)}\mu^{(1)}(x+t) = \left(\frac{60-t}{60}\right)e^{-0.01t} \times \frac{1}{60-t} = \frac{e^{-0.01t}}{60} \quad \text{for } 0 \le t < 60$$

$$f_{T,J}(t,2) = {}_{t}p_{x}^{(\tau)}\mu^{(2)}(x+t) = \left(\frac{60-t}{60}\right)e^{-0.01t} \times 0.01 = \frac{(60-t)e^{-0.01t}}{6,000} \quad \text{for } 0 \le t < 60$$

So the single benefit premium is:

$$E[Z] = \sum_{j=1}^{2} \left(\int_{0}^{\infty} z_{t,j} f_{T,J}(t,j) dt \right)$$

$$= \int_{0}^{\infty} 1,000 e^{-0.05t} f_{T,J}(t,1) dt + \int_{0}^{\infty} 2,000 e^{-0.05t} f_{T,J}(t,2) dt$$

$$= \int_{0}^{60} \left(1,000 e^{-0.05t} \right) \left(\frac{e^{-0.01t}}{60} \right) dt + \int_{0}^{60} \left(2,000 e^{-0.05t} \right) \left(\frac{(60-t)e^{-0.01t}}{6,000} \right) dt$$

Solution 7.19

$$\begin{aligned} \text{APV} &= \frac{1,000\,q_x^{(1)}}{1.05} + \frac{1,000\,_{1}|q_x^{(1)}}{1.05^2} + \frac{2,000\,q_x^{(2)}}{1.05} + \frac{2,000\,_{1}|q_x^{(2)}}{1.05^2} \\ &= \frac{1,000\big(0.035\big)}{1.05} + \frac{1,000\big(0.045\big)}{1.05^2} + \frac{2,000\big(0.001\big)}{1.05} + \frac{2,000\big(0.002\big)}{1.05^2} \\ &= 79.68254 \end{aligned}$$

Since the premiums are paid at time 0 and at time 1 (if surviving), the APV of premium is equal to:

$$P + P v p_x^{(\tau)} = P \left(1 + \frac{964/1,000}{1.05} \right) = 1.91810 P$$

As a result of the equivalence principle, we have:

$$1.91810P = APV \text{ of Premium} = APV \text{ of Benefit} = 79.68254$$

 $\Rightarrow P = 41.54254$