

Actuarial models

Solutions to practice questions - Chapter 3

Solution 3.1

$$
Y=\left\{\begin{array}{ll}
\ddot{a}_{\overline{K+1}} & \text { for } K=0,1,2 \\
\ddot{a}_{3} & \text { for } K \geq 3
\end{array}, \text { where } K=K(30) .\right.
$$

Solution 3.2

$$
\begin{aligned}
E[Y] & =\ddot{a}_{11} q_{30}+\ddot{a}_{21} \mid q_{30}+\ddot{a}_{3 \mid 2} p_{30} \\
& =1+v p_{30}+v^{2}{ }_{2} p_{30}
\end{aligned}
$$

Solution 3.3

The current payment method is probably the simplest to use. From the given mortality rates, we have:

$$
p_{30}=1-0.010=0.99 \quad{ }_{2} p_{30}=\left(1-q_{30}\right)\left(1-q_{31}\right)=0.99 \times 0.985=0.97515
$$

So we must have:

$$
E[Y]=1+v p_{30}+v^{2}{ }_{2} p_{30}=1+\frac{0.99}{1.05}+\frac{0.97515}{1.05^{2}}=2.82735
$$

Solution 3.4

$$
Y=\left\{\begin{array}{cc}
0 & T \leq 10 \\
\bar{a}_{\bar{T}}-\bar{a}_{\overline{10}} & T>10
\end{array} \quad \text { where } T=T(55)\right.
$$

Solution 3.5

$$
\begin{aligned}
1000_{10 \mid} \bar{a}_{55} & =1000\left(\int_{0}^{10} 0 f_{T(55)}(t) d t+\int_{10}^{\omega-55}\left(\bar{a}_{\bar{t}}-\bar{a}_{10}\right) f_{T(55)}(t) d t\right) \\
& =1000 \int_{10}^{\omega-55}{ }_{v}{ }^{t}{ }_{t} p_{55} d t
\end{aligned}
$$

Solution 3.6

Since $\delta=0.05$, we have $v^{t}=e^{-0.05 t}$. With de Moivre's law, the future lifetime of (55) is uniformly distributed on the interval $(0,35]$. The survival function is thus: ${ }_{t} p_{55}=1-t / 35$ for $0<t \leq 35$. Evaluating the current payment formula will require an integration by parts to evaluate $\int_{10}^{35} t e^{-0.05 t} d t$. However, evaluating the aggregate payment formula will only require exponential integrals.

$$
\begin{aligned}
10001_{10 \mid} \bar{a}_{55} & =1000 \int_{10}^{\omega-55}\left(\bar{a}_{\bar{t}}-\bar{a}_{\overline{10 \mid}}\right) f_{T(55)}(t) d t \\
& =1000 \int_{10}^{35}\left(\frac{1-e^{-0.05 t}}{.05}-7.86939\right) \frac{1}{35} d t \\
& =\frac{1000}{35}\left(20 \int_{10}^{35} d t-20 \int_{10}^{35} e^{-0.05 t} d t-7.86939 \int_{10}^{35} d t\right) \\
& =\frac{1000}{35}\left(20 \times 25+20\left(\left.\frac{e^{-0.05 t}}{0.05}\right|_{10} ^{35}\right)-7.86939 \times 25\right) \\
& =3,719
\end{aligned}
$$

Solution 3.7

The fund is $1.1 \times 3,719=4,091$ to the nearest dollar. The life (55) will have to live at least 10 years for Y to exceed this number. So we have:

$$
\begin{aligned}
\operatorname{Pr}(Y \leq F) & =1-\operatorname{Pr}(Y>4,091)=1-\operatorname{Pr}\left(\bar{a}_{T \mid}-\bar{a}_{\overline{10}}>4.091\right) \\
& =1-\operatorname{Pr}\left(\bar{a}_{T \mid}>11.960\right)=1-\operatorname{Pr}\left(\frac{1-e^{-0.05 T}}{0.05}>11.960\right) \\
& =1-\operatorname{Pr}\left(0.40199>e^{-0.05 T}\right)=1-\operatorname{Pr}(T>18.227) \\
& =1-{ }_{18.227} p_{55}=1-\left(1-\frac{18.227}{35}\right)=0.521
\end{aligned}
$$

Solution 3.8

$$
\begin{aligned}
\ddot{a}_{x} & =1+v p_{x}+v^{2}{ }_{2} p_{x}+\cdots \\
& =1+e^{-\delta} e^{-\mu}+e^{-2 \delta} e^{-2 \mu}+\cdots \quad \text { (geometric series) } \\
& =\frac{1}{1-e^{-(\delta+\mu)}}=\frac{e^{\delta}}{e^{\delta}-e^{-\mu}}=\frac{1+i}{1+i-\left(1-q_{x}\right)}=\frac{1+i}{i+q_{x}}
\end{aligned}
$$

Solution 3.9

Y is a discrete random variable with only 3 possible values:

$$
\begin{aligned}
& Y=1 \text { if } K=0 \text { and } \operatorname{Pr}(K=0)=q_{30}=0.01 \\
& Y=1+v=1.95238 \text { if } K=1 \text { and } \operatorname{Pr}(K=1)={ }_{1} \mid q_{30}=0.99 \times 0.015=0.01485 \\
& Y=1+v+v^{2}=2.85941 \text { if } K \geq 2 \text { and } \operatorname{Pr}(K \geq 2)=0.99 \times 0.985=0.97515
\end{aligned}
$$

We already have $E[Y]=2.82735$. The second moment is:

$$
\begin{aligned}
E\left[Y^{2}\right] & =1^{2} \times 0.01+(1.95238)^{2} \times 0.01485+(2.8591)^{2} \times 0.97515 \\
& =8.03965
\end{aligned}
$$

So the variance is $8.03965-2.82735^{2}=0.04576$.

Solution 3.10

There is a standard formula for this variance:

$$
\operatorname{var}(Y)=1,000^{2} \times \frac{{ }^{2} \bar{A}_{55}-\left(\bar{A}_{55}\right)^{2}}{\delta^{2}}
$$

There is also a shortcut calculation of insurance moments for de Moivre's law (see Section 2.6 of Chapter 2)":

$$
\begin{aligned}
& \bar{A}_{x}=\frac{\bar{a} \overline{\omega-x}}{\omega-x} \Rightarrow \\
& \bar{A}_{55}=\frac{\bar{a} \overline{35}}{35}=\frac{1-e^{-35 \times 0.05}}{35 \times 0.05}=0.47213 \\
& { }^{2} \bar{A}_{55}=\frac{{ }^{2} \bar{a} \overline{35}}{35}=\frac{1-e^{-35 \times 0.10}}{35 \times 0.10}=0.27709
\end{aligned}
$$

Plug these numbers into the variance formula above and the resulting variance is $21,672,202$.

Solution 3.11

The aggregate present value is $S=Y_{1}+\Upsilon_{2}+\cdots+Y_{100}$ where the Y_{i} are independent. In Solution 3.3 we saw that $E[Y]=2.82735$. In Solution 3.9 we calculated $\operatorname{var}(Y)=0.04576$. For the distribution of S, we have:

$$
E[S]=100 E[Y]=282.735 \quad \operatorname{var}(S)=100 \operatorname{var}(Y)=4.576
$$

The fund F is $1.1 \times 282.735=311.009$. Since this number is approximately 13 standard deviations above the mean, it is virtually certain that the fund is sufficient. The probability of insufficiency is virtually 0 .

Solution 3.12

$$
100 \ddot{a}{ }_{30: 3 \mid}^{(2)}=50+50 v_{0.5}^{0.5} p_{30}+50 v p_{30}+50 v_{1.5}^{1.5} p_{30}+50 v_{2}^{2} p_{30}+50 v^{2.5}{ }_{2.5} p_{30}
$$

To evaluate this formula, use $v=1 / 1.05$, and the UDD rule $t p_{x}=1-t q_{x}$ when x is a whole age and t is a fractional part of a year:

$$
\begin{aligned}
& 100 \ddot{a}(2) \\
& 30: 3 \mathrm{3} \\
&=50+\frac{50 \times(1-0.5 \times 0.01)}{1.05^{0.5}}+\frac{50 \times 0.99}{1.05}+\frac{50 \times 0.99 \times(1-0.5 \times 0.015)}{1.05^{1.5}} \\
&+\frac{50 \times 0.99 \times 0.985}{1.05^{2}}+\frac{50 \times 0.99 \times 0.985 \times(1-0.5 \times 0.020)}{1.05^{2.5}}=278.31
\end{aligned}
$$

Solution 3.13

Use the insurance shortcut for de Moivre's law:

$$
A_{60}=\frac{a \overline{30}}{30}=\frac{1-1.06^{-30}}{30 \times 0.06}=0.45883 \quad A_{75}=\frac{a \overline{15}}{15}=\frac{1-1.06^{-15}}{15 \times 0.06}=0.64748
$$

Using the annuity-insurance relation, the value of the whole life annuity due is:

$$
1,000 \ddot{a}_{60}=1,000 \times \frac{1-A_{60}}{d}=9,560.71
$$

The value of the certain and life annuity due is:

$$
\begin{aligned}
A P V & =1,000\left(\ddot{a}_{15}+{ }_{15} \mid \ddot{a}_{60}\right)=1,000\left(\ddot{a}_{\overline{15}}+v^{15}{ }_{15} p_{60} \ddot{a}_{75}\right) \\
& =1,000\left(\frac{1-1.06^{-15}}{0.06 / 1.06}+1.06^{-15} \times \frac{15}{30} \times \frac{1-0.64748}{0.06 / 1.06}\right)=11,594.30
\end{aligned}
$$

This is approximately a 21.3% increase in the APV.

Solution 3.14

Note first that we have:

$$
d^{(2)}=2\left(1-v^{0.5}\right)=2\left(1-1.06^{-0.5}\right)=0.05743
$$

Now let's do the APV calculation:

$$
\begin{aligned}
A P V & =1,000\left(\ddot{a}_{10 \mid}^{(2)}+{ }_{10 \mid} \ddot{a}_{40}^{(2)}\right)=1,000\left(\frac{1-v^{10}}{d^{(2)}}+v^{10}{ }_{10} p_{40} \ddot{a}_{50}^{(2)}\right) \\
& =1,000\left(\frac{1-1.06^{-10}}{0.05743}+0.53667 \times\left(\alpha(2) \ddot{a}_{50}-\beta(2)\right)\right) \\
& =1,000(7.68968+0.53667 \times(1.00021 \times 13.2668-0.25739))=14,673
\end{aligned}
$$

Solution 3.15

$K(62)$	Probability	Y
0	0.02	50
1	$0.04-0.02=0.02$	$50+75 v=121.42857$
≥ 2	0.96	$50+75 v+100 v^{2}=212.13152$

Solution 3.16

From the table we have:

$$
\begin{aligned}
& E[Y]=50 \times 0.02+121.42857 \times 0.02+212.13152 \times 0.96=207.07483 \\
& E\left[Y^{2}\right]=50^{2} \times 0.02+121.42857^{2} \times 0.02+212.13152^{2} \times 0.96=43,544.69 \\
& \operatorname{var}(Y)=664.70
\end{aligned}
$$

Solution 3.17

With de Moivre's law we have $q_{x}=1 /(\omega-x)=1 /(100-x)$. The backward recursion formula is:

$$
A_{x}=v q_{x}+v p_{x} A_{x+1}=\frac{q_{x}+p_{x} A_{x+1}}{1.05}
$$

The starting point is $A_{100}=1$. The recursion formula leads to:

$$
\begin{array}{ll}
A_{99}=\frac{\frac{1}{1}+0 \times A_{100}}{1.05}=0.95238 & A_{98}=\frac{\frac{1}{2}+\frac{1}{2} \times 0.95238}{1.05}=0.92971 \\
A_{97}=\frac{\frac{1}{3}+\frac{2}{3} \times 0.92971}{1.05}=0.90775 & A_{96}=\frac{\frac{1}{4}+\frac{3}{4} \times 0.90775}{1.05}=0.88649
\end{array}
$$

Solution 3.18

You should first notice that p_{81} is also 0.90 .

$$
\begin{aligned}
& e_{x}=p_{x}+p_{x} e_{x+1} \Rightarrow e_{x+1}=\frac{e_{x}-p_{x}}{p_{x}} \\
& e_{81}=\frac{8.5-0.9}{0.9}=8.444 \quad e_{82}=\frac{8.444-0.9}{0.9}=8.383
\end{aligned}
$$

Solution 3.19

$$
\begin{aligned}
F & =1.2 \int_{0}^{5} \underbrace{100(1-0.2 w)}_{\text {amount }} \times \underbrace{e^{-0.05 w}}_{\text {discount }} \times \underbrace{0.10 e^{-0.10 w} d w}_{\text {probability } f(w) d w} \\
& =12\left(\int_{0}^{5} e^{-0.15 w} d w-0.2 \int_{0}^{5} w e^{-0.15 w} d w\right)=12\left(\left(-\left.\frac{e^{-0.15 w}}{0.15}\right|_{0} ^{5}-0.2\left(-\left.\frac{e^{-0.05 w}(0.15 w+1)}{0.15^{2}}\right|_{0} ^{5}\right)\right)\right)= \\
& =12(3.51756-1.54096)=23.71910
\end{aligned}
$$

Solution 3.20

(i) $1,000 A_{45: 5\rceil}^{1}=1,000 v^{5}{ }_{5} p_{45}=\frac{1,000 l_{50}}{1.06^{5} l_{45}}=729.88$
(ii) $\quad \ddot{a}_{45: 5 \mid}=\ddot{a}_{45}-v^{5}{ }_{5} p_{45} \ddot{a}_{50}=14.1121-\left(\frac{729.88}{1,000}\right) 13.2668=4.42896$
(iii) $\quad \bar{a}_{40: \overline{10}}=\frac{1-\bar{A}_{40: \overline{10}}}{\delta}=\frac{1-\left(\frac{i}{\delta} A_{40: \overline{10}}^{1}+A_{40: 10 \mid}\right)}{\ln (1.06)}$

$$
\begin{aligned}
& =\frac{1-\left(\frac{0.06}{\ln (1.06)}(0.16132-0.53667 \times 0.24905)+0.53667\right)}{\ln (1.06)} \\
& =7.46274
\end{aligned}
$$

