

Actuarial models

Solutions to practice questions - Chapter 13

Solution 13.1

The rate of this process is $\lambda=0.2$ per minute. So the number of coins found during a 2 -minute walk follows a Poisson distribution with mean $2 \lambda=0.40$. As a result, we have:

$$
\operatorname{Pr}(N(2) \geq 2)=1-e^{-0.4}(1+0.4)=0.06155
$$

Solution 13.2

$$
N(2) \sim \text { Poisson mean } 0.4 \Rightarrow E[N]=\operatorname{var}(N)=0.4
$$

Solution 13.3

The distribution of $N(5)$ is Poisson with parameter $5 \lambda=1$.

$$
\begin{aligned}
& \{N(5) \geq 2 \text { and } N(10) \geq 3\}=\{N(5)=2 \text { and } N(10)-N(5) \geq 1\} \cup\{N(5) \geq 3\} \\
& \begin{aligned}
\operatorname{Pr}(N(5) \geq 2 & \text { and } N(10) \geq 3)=\operatorname{Pr}(N(5)=2 \text { and } N(10)-N(5) \geq 1)+\operatorname{Pr}(N(5) \geq 3) \\
& =\operatorname{Pr}(N(5)=2) \underbrace{\operatorname{Pr}(N(10)-N(5) \geq 1)}_{\text {same as } \operatorname{Pr}(N(5) \geq 1)}+\operatorname{Pr}(N(5) \geq 3)
\end{aligned} \\
& \quad=e^{-1} \frac{1^{2}}{2!} \times\left(1-e^{-1}\right)+\left(1-e^{-1}\left(1+1+\frac{1^{2}}{2!}\right)\right)=0.19657
\end{aligned}
$$

Solution 13.4

$$
\begin{aligned}
\operatorname{Pr}(N(5) & =2 \mid N(10)=3)=\frac{\operatorname{Pr}(N(5)=2 \text { and } N(10)=3)}{\operatorname{Pr}(N(10)=3)} \\
& =\frac{\operatorname{Pr}(N(5)=2 \text { and } N(10)-N(5)=1)}{\operatorname{Pr}(N(10)=3)}=\frac{\operatorname{Pr}(N(5)=2) \operatorname{Pr}(N(10)-N(5)=1)}{\operatorname{Pr}(N(10)=3)} \\
& =\frac{\operatorname{Pr}(N(5)=2) \operatorname{Pr}(N(5)=1)}{\operatorname{Pr}(N(10)=3)}=\frac{e^{-1} \frac{1^{2}}{2!} \times e^{-1} \frac{1^{1}}{1!}}{e^{-2} \frac{2^{3}}{3!}}=\binom{3}{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)=\frac{3}{8}
\end{aligned}
$$

Solution 13.5

Since the process rate is $\lambda=0.4$ per day, the inter-arrival time for this process, T, is exponentially distributed with mean $1 / \lambda=2.5$ days. You are asked to calculate $\operatorname{Pr}(T \leq 7 \mid T>5)$. Due to the memory-less property of the exponential distribution, we have:

$$
\operatorname{Pr}(T \leq 7 \mid T>5)=\operatorname{Pr}(T-5 \leq 2 \mid T>5)=\operatorname{Pr}(T \leq 2)=\int_{0}^{2} f_{T}(t) d t=\int_{0}^{2} 0.4 e^{-0.4 t} d t=1-e^{-0.8}=0.55067
$$

Solution 13.6

We must solve the inequality:

$$
0.90 \leq \operatorname{Pr}(N(n) \geq 2)=1-e^{-0.4 n}(1+0.4 n)
$$

By trial and error you will find that the right hand side is 0.874 when $n=9$, and it is 0.908 when $n=10$. So the intersection must be observed for 10 full days to have at least a 90% chance of seeing at least 2 accidents.

Solution 13.7

Since $\lambda=0.4$, the time of the third event, S_{3}, follows a gamma distribution with $\alpha=3$ and $\theta=1 / \lambda=2.5$. The mean and variance of this event time are:

$$
E\left[S_{3}\right]=\alpha \theta=7.5 \quad \operatorname{var}\left(S_{3}\right)=\alpha \theta^{2}=18.75
$$

Solution 13.8

Using the results in Solution 13.7, we see that we must calculate the exact probability of the event:

$$
3.16987=7.5-\sqrt{18.75} \leq S_{3} \leq 7.5+\sqrt{18.75}=11.83013
$$

From Theorem 13.2 (iv), we have the following formula for the cdf of S_{3} :

$$
\begin{aligned}
F_{S_{3}}(t) & =\operatorname{Pr}\left(S_{3} \leq t\right)=\operatorname{Pr}(N(t) \geq 3)=1-e^{-0.4 t}\left(1+0.4 t+\frac{(0.4 t)^{2}}{2!}\right) \\
& =1-e^{-0.4 t}\left(1+0.4 t+0.08 t^{2}\right)
\end{aligned}
$$

So we have:

$$
\operatorname{Pr}\left(3.16987 \leq S_{3} \leq 11.83013\right)=F_{S_{3}}(11.83013)-F_{S_{3}}(3.16987)=0.85089-0.13557=0.71532
$$

Solution 13.9

We must thin the process producing losses to losses exceeding the limit $L=500$. The probability that a loss exceeds 500 is:

$$
\operatorname{Pr}(X>500)=s_{X}(500)=\left(\frac{\theta}{\theta+500}\right)^{\alpha}=\left(\frac{250}{750}\right)^{2}=\frac{1}{9}
$$

So the Poisson process $N_{1}(t)$ counting losses in excess of 500 has rate $\lambda_{1}=\lambda p_{1}=10 \operatorname{Pr}(X>500)=10 / 9$ per month. We are asked to calculate $E\left[S_{4}^{(1)}\right]$ and $\operatorname{var}\left(S_{4}^{(1)}\right)$ for this thinned process:

$$
S_{4}^{(1)} \sim \text { gamma } \alpha=4, \theta_{1}=1 / \lambda_{1}=9 / 10 \Rightarrow E\left[S_{4}^{(1)}\right]=\alpha \theta_{1}=3.6, \operatorname{var}\left(S_{4}^{(1)}\right)=\alpha \theta_{1}^{2}=3.24
$$

Solution 13.10

$$
\operatorname{Pr}\left(S_{3}^{(1)} \leq 1\right)=\operatorname{Pr}\left(N_{1}(1) \geq 3\right)=1-e^{-\lambda_{1}}\left(1+\lambda_{1}+\frac{\lambda_{1}^{2}}{2!}\right)=0.10183
$$

Solution 13.11

Here we are asked to calculate the expected value and variance of the inter-arrival time for the thinned process:

$$
T^{(1)} \sim \text { exponential } \theta_{1}=1 / \lambda_{1}=9 / 10 \Rightarrow E\left[T^{(1)}\right]=\theta_{1}=9 / 10, \operatorname{var}\left(T^{(1)}\right)=\theta_{1}^{2}=81 / 100
$$

Solution 13.12

We need to apply the reasoning employed in the solution to Example 13.9. The method of this solution was extended to give a general formula in Theorem 13.3.

We have two categories of losses:

- $\quad C_{1}$ is the category of losses greater than 500, and $p_{1}=\operatorname{Pr}(X>500)=1 / 9$
- $\quad C_{2}$ is the category of losses less than or equal to 500 , and $p_{2}=1-p_{1}=8 / 9$

The probability that two losses in excess of the limit occur before five losses at or below the limit is the same as the probability of 2 or more successes in the next 6 trials (ie a trial consists of waiting for the next loss) where the probability of success is $p=p_{1}=1 / 9$ ("success" means that the loss exceeds 500). Using the binomial probability function, we have:
$\operatorname{Pr}($ at least 2 successes in 6 trials $)=1-\binom{6}{0}\left(\frac{1}{9}\right)^{0}\left(\frac{8}{9}\right)^{6}-\binom{6}{1}\left(\frac{1}{9}\right)^{1}\left(\frac{8}{9}\right)^{5}=0.13678$

Solution 13.13

Since the rate function is $\lambda(t)=100-10 t$ for $0 \leq t \leq 10$, the mean value function is:

$$
m(t)=\int_{0}^{t} \lambda(s) d s=\int_{0}^{t} 100-10 s d s=100 t-5 t^{2} \text { for } 0 \leq t \leq 10
$$

In general, we have $N(t) \sim$ Poisson $m(t)$. So $E[N(10)]=m(10)=500$.

Solution 13.14

The distribution of $N(5)$ is Poisson with parameter equal to $m(5)=375$. Making a normal approximation to the distribution of $N(5)$ with $\mu=E\left[N_{5}\right]=375$ and $\sigma^{2}=\operatorname{var}\left(N_{5}\right)=375$, we have:

$$
\operatorname{Pr}(N(5)>425) \approx \operatorname{Pr}\left(N(0,1)>\frac{425-375}{\sqrt{375}}\right)=1-\Phi(2.582) \approx 0.005
$$

Solution 13.15

$$
f_{T_{1}}(t)=\lambda(t) e^{-m(t)}=(100-10 t) e^{-\left(100 t-5 t^{2}\right)} \text { for } t>0
$$

Solution 13.16

Here we have time-dependent thinning. Category 1 corresponds to express trains and category 2 corresponds to local trains. We are given that:
where time is measured in hours from 5 am .

We are asked to calculate $E\left[N_{1}(4)\right]$. According to the discussion in Section 13.6, we have:

$$
\begin{aligned}
& N_{1}(t) \sim \text { Poisson with parameter } m_{1}(t)=\lambda \int_{0}^{t} p_{1}(s) d s \\
& m_{1}(4)=\lambda \int_{0}^{4} p_{1}(s) d s=5\left(\int_{0}^{1} 0.2 d s+\int_{1}^{3} 0.5 d s+\int_{3}^{4} 0.2 d s\right)=7
\end{aligned}
$$

Solution 13.17

We are asked to calculate $\operatorname{Pr}\left(N_{1}(2.5)-N_{1}(1.5) \geq 2\right)$. We must first calculate the mean value function for this thinned process:

$$
m_{1}(2.5)-m_{1}(1.5)=\int_{1.5}^{2.5} \lambda_{1}(t) d t=\lambda \int_{1.5}^{2.5} p_{1}(t) d t=5 \int_{1.5}^{2.5} 0.5 d t=2.5
$$

As a result, we know that $N_{1}(2.5)-N_{1}(1.5)$ is Poisson distributed with parameter 2.5. Therefore:

$$
\operatorname{Pr}\left(N_{1}(2.5)-N_{1}(1.5) \geq 2\right)=1-e^{-2.5}(1+2.5)=0.71270
$$

Solution 13.18

Think of resetting time 0 to 7 am . So the rate function for the express train process is thus:

$$
\lambda_{1}(t)=5 p_{1}(t)=\left\{\begin{array}{ll}
2.5 & \text { for } 0 \leq t \leq 1 \\
1.0 & \text { for } 1<t \leq 16
\end{array} \quad \text { (note: service stops at } 11 \mathrm{pm},\right. \text { time 16) }
$$

The mean value function is:

$$
m_{1}(t)=\int_{0}^{t} \lambda_{1}(s) d s=\left\{\begin{array}{cc}
2.5 t & \text { for } 0 \leq t \leq 1 \\
2.5+(t-1) & \text { for } 1 \leq t \leq 16
\end{array}\right.
$$

The survival function for $T_{1}^{(1)}$ is:

$$
\operatorname{Pr}\left(T_{1}^{(1)}>t\right)=\operatorname{Pr}\left(N_{1}(t)=0\right)=e^{-m_{1}(t)}
$$

If time $t=0$ corresponds to 7 am , then 7:06 am is time $t=0.1$ and $7: 30 \mathrm{am}$ is time $t=0.5$. We are asked to calculate the conditional probability:

$$
\begin{aligned}
\operatorname{Pr}\left(T_{1}^{(1)} \leq 0.5 \mid T_{1}^{(1)}>0.1\right)=1-\operatorname{Pr}\left(T_{1}^{(1)}>0.5 \mid T_{1}^{(1)}>0.1\right)=1-\frac{\operatorname{Pr}\left(T_{1}^{(1)}>0.5\right)}{\operatorname{Pr}\left(T_{1}^{(1)}>0.1\right)} \\
=1-\frac{e^{-m_{1}(0.5)}}{e^{-m_{1}(0.1)}}=1-e^{-\left(m_{1}(0.5)-m_{1}(0.1)\right)}=1-e^{-(1.25-0.25)}=0.63212
\end{aligned}
$$

Solution 13.19

We are given $\lambda=2$ per minute, and: $\operatorname{Pr}(X=0.85)=0.8, \operatorname{Pr}(X=1.25)=0.2$. So total sales in t minutes is modeled by the compound Poisson process:

$$
S(t)=X_{1}+\cdots+X_{N(t)} \text { where } N(t) \sim \text { Poisson } 2 t
$$

It is easy to verify that $E[X]=0.93000, E\left[X^{2}\right]=0.89050$. Therefore we have:

$$
E[S(60)]=60 \lambda E[X]=(2 \times 60) \times 0.93=111.60, \operatorname{var}(S(60))=60 \lambda E\left[X^{2}\right]=(2 \times 60) \times 0.89050=106.86
$$

Solution 13.20

Split the Poisson process into the sum of the processes corresponding to small coffee purchases and large coffee purchases:

$$
N(t)=N_{s}(t)+N_{l}(t) \text { where } \lambda_{s}=\lambda \times 0.8=1.6, \quad \lambda_{l}=\lambda \times 0.2=0.4
$$

We are asked to compute $E\left[S(60) \mid N_{s}(60)=120\right]$ and $\operatorname{var}\left(S(60) \mid N_{S}(60)=120\right)$. So write aggregate sales in terms of the frequencies of large and small coffee purchases:

$$
S(60)=0.85 N_{s}(60)+1.25 N_{l}(60)
$$

Now use the independence of $N_{s}(60)$ and $N_{l}(60)$:

$$
\begin{aligned}
E\left[S(60) \mid N_{s}(60)=120\right] & =E\left[0.85 N_{s}(60)+1.25 N_{l}(60) \mid N_{s}(60)=120\right] \\
& =E\left[102+1.25 N_{l}(60) \mid N_{s}(60)=120\right]=E\left[102+1.25 N_{l}(60)\right] \\
& =102+1.25 \times(0.4 \times 60)=132 \\
\operatorname{var}\left(S(60) \mid N_{s}(60)=120\right) & =\operatorname{var}\left(0.85 N_{s}(60)+1.25 N_{l}(60) \mid N_{s}(60)=120\right) \\
& =\operatorname{var}\left(102+1.25 N_{l}(60) \mid N_{s}(60)=120\right)=\operatorname{var}\left(102+1.25 N_{l}(60)\right) \\
& =1.25^{2} \times(0.4 \times 60)=37.50
\end{aligned}
$$

