

Actuarial models

Solutions to practice questions - Chapter 11

Solution 11.1

From the given information we have:

$$
\frac{6 / 64}{1 / 16}=\frac{\operatorname{Pr}(N=1)}{\operatorname{Pr}(N=0)}=a+\frac{b}{1} \quad, \quad \frac{27 / 256}{6 / 64}=\frac{\operatorname{Pr}(N=2)}{\operatorname{Pr}(N=1)}=a+\frac{b}{2}
$$

The solution of this simultaneous system of equations is: $a=b=0.75$.

Solution 11.2

The value of a is positive only for a negative binomial distribution. (It is zero for a Poisson distribution, and negative for a binomial distribution.) Now use the form of a and b for a negative binomial to determine the parameters:

$$
0.75=a=\frac{\beta}{1+\beta}, \quad 0.75=b=\frac{(r-1) \beta}{1+\beta} \quad \Rightarrow \quad r=2, \beta=3
$$

Now it is easy to finish the exercise:

$$
\begin{aligned}
& E[N]=r \beta=6, \quad \operatorname{var}(N)=r \beta(1+\beta)=24 \\
& \operatorname{Pr}(N=8)=\frac{r(r+1) \cdots(r+7)}{8!}\left(\frac{\beta}{1+\beta}\right)^{8}\left(\frac{1}{1+\beta}\right)^{2}=\frac{9 \times 3^{8}}{4^{10}}
\end{aligned}
$$

Solution 11.3

The Poisson distribution with $\lambda=1.4$ would be a good model for N, the random number of accidents per month. With this assumption the probability of more than 1 accident in a month is:

$$
\operatorname{Pr}(N \geq 2)=1-\operatorname{Pr}(N=0)-\operatorname{Pr}(N=1)=1-e^{-1.4}(1+1.4)=0.40817
$$

Now let M be the number of months in the next 6 months with more than 1 accident.

A good model for the distribution of M is binomial with $m=6$ trials (each month is a trial). A month is considered to be a "success" if more than 1 accident occurs. The probability of "success" is:

$$
p=\operatorname{Pr}(\text { "success" })=\operatorname{Pr}(N \geq 2)=0.40817
$$

The probability of more than 1 success in the next 6 trials is:

$$
\begin{aligned}
\operatorname{Pr}(M \geq 2) & =1-\operatorname{Pr}(M=0)-\operatorname{Pr}(M=1) \\
& =1-\binom{6}{0}(0.40817)^{0}(0.59183)^{6}-\binom{6}{1}(0.40817)^{1}(0.59183)^{5} \\
& =0.77921
\end{aligned}
$$

Solution 11.4

The probability that a loss exceeds 900 is: $\operatorname{Pr}(X>900)=\int_{900}^{1,000} 0.001 d x=0.10$. Consider a loss to be a success if it exceeds 900. Due to the assumptions in the question, the losses can be viewed as being a series of independent Bernoulli trials with $p=\operatorname{Pr}(X>900)=0.10$. Let N be the number of failures observed before 2 successes are observed. Then the number of loss observed is $N+2$, and N follows a negative binomial distribution with parameters $r=2$ and $p=0.10$ (equivalently, $\beta=p^{-1}-1=9$). So the expected number of losses observed is:

$$
E[2+N]=2+r \beta=2+2 \times 9=20
$$

Solution 11.5

The given density function is for a gamma distribution with $\alpha=3, \theta=1 / 5$. We are given that $N \mid \Lambda=\lambda$ is Poisson with mean $\Lambda=\lambda$, and that Λ follows a gamma distribution. As a result, we know that N, the annual number of accidents on a randomly selected 10-mile stretch of this highway, follows a negative binomial distribution with $r=\alpha=3$ and $\beta=\theta=1 / 5$. The annual number of accidents on a 20-mile stretch of highway, M, can be viewed as a sum of 2 such negative binomial distribution. So it follows a negative binomial distribution with $r=2 \times 3=6$ and $\beta=\theta=1 / 5$. So the probability of $M=2$ is:

$$
\operatorname{Pr}(M=2)=\frac{6 \times 7}{2!}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{6}=0.19536
$$

Solution 11.6

The number of consecutive road games that they will lose follows a geometric distribution with $p=1 / 8$. We are asked to compute $E[N \mid N \geq 6]$. According to the memory-less property, $N-6 \mid N \geq 6$ also follows this same geometric distribution. So we have:

$$
\begin{aligned}
E[N \mid N \geq 6] & =E[6+N-6 \mid N \geq 6]=6+E[N-6 \mid N \geq 6]=6+E[N] \\
& =6+\beta=6+\left(p^{-1}-1\right)=6+8-1=13
\end{aligned}
$$

Solution 11.7

Each of the $m=25$ lives is viewed as a Bernoulli trial. A trial is considered to be a success if the policyholder dies within 5 years. The probability of success is:

$$
p={ }_{5} q_{50}=1-\frac{l_{55}}{l_{50}}=1-\frac{90-55}{90-50}=\frac{5}{40} \text { since } l_{x}=90-x
$$

The number of deaths from this group in the next 5 years follows a binomial distribution with $m=25, p=1 / 8$. We are asked to determine:

$$
\begin{aligned}
\operatorname{Pr}(M \geq 2) & =1-\operatorname{Pr}(M=0)-\operatorname{Pr}(M=1)=1-\binom{25}{0}\left(\frac{1}{8}\right)^{0}\left(\frac{7}{8}\right)^{25}-\binom{25}{0}\left(\frac{1}{8}\right)^{0}\left(\frac{7}{8}\right)^{25} \\
& =1-0.03550-0.12678=0.83772
\end{aligned}
$$

Solution 11.8

We have a compound counting model for the annual number of payments to dependents:

$$
C=M_{1}+\cdots+M_{N} \text { where } N \sim \text { negative binomial } r=\beta=2
$$

From the given information it is easily checked that $E[M]=1, E\left[M^{2}\right]=1.6, \operatorname{var}(M)=0.6$. So from standard compound sum moment formulas, we have:

$$
\begin{aligned}
E[C]= & E[N] E[M]=(r \beta) 1=4 \\
\operatorname{var}(C) & =E[N] \operatorname{var}(M)+(E[M])^{2} \operatorname{var}(N) \\
& =(r \beta) \times 0.6+(1.0)^{2}(r \beta(1+\beta))=14.4
\end{aligned}
$$

Solution 11.9

We need to use Theorem 11.1:

$$
\begin{aligned}
& r=2, \beta=2 \Rightarrow a=\frac{\beta}{1+\beta}=\frac{2}{3}, b=\frac{(r-1) \beta}{1+\beta}=\frac{2}{3} \\
& \text { and } P_{N}(z)=(1-\beta(z-1))^{-r}=(3-2 z)^{-2}
\end{aligned}
$$

The starting value for the recursion is:

$$
\operatorname{Pr}(C=0)=P_{N}(\operatorname{Pr}(M=0))=P_{N}(0.3)=(3-2(0.3))^{-2}=0.17361
$$

The recursion formula is:

$$
\begin{aligned}
\operatorname{Pr}(C=n) & =\frac{1}{1-a \operatorname{Pr}(M=0)} \sum_{j=1}^{n}\left(a+\frac{b j}{n}\right) \operatorname{Pr}(M=j) \operatorname{Pr}(C=n-j) \\
& =\frac{1}{1-\frac{2}{3}(0.3)} \sum_{j=1}^{n}\left(\frac{2}{3}+\frac{2 j}{3 n}\right) \operatorname{Pr}(M=j) \operatorname{Pr}(C=n-j) \\
& =1.25\left(\left(\frac{2}{3}+\frac{2}{3 n}\right) 0.4 \operatorname{Pr}(C=n-1)+\left(\frac{2}{3}+\frac{4}{3 n}\right) 0.3 \operatorname{Pr}(C=n-2)\right)
\end{aligned}
$$

With $n=1$, we have:

$$
\operatorname{Pr}(C=1)=1.25\left(\left(\frac{2}{3}+\frac{2}{3}\right) 0.4 \operatorname{Pr}(C=0)\right)=0.11574
$$

Finally, we have $\operatorname{Pr}(C \leq 1)=\operatorname{Pr}(C=0)+\operatorname{Pr}(C=1)=0.28935$

Solution 11.10

First let $\tilde{M}=M+1$. This variable will also count the initial earthquake in an event. The annual number of earthquakes and aftershocks is:

$$
C=\tilde{M}_{1}+\cdots+\tilde{M}_{N} \text { where } N \sim \text { geometric with } 2=\beta=E[N]
$$

The probability distribution of \tilde{M} is:

$$
\operatorname{Pr}(\tilde{M}=1)=0.10, \operatorname{Pr}(\tilde{M}=2)=0.60, \operatorname{Pr}(\tilde{M}=3)=0.30
$$

The moment generating function of the geometric primary distribution is:

$$
P_{N}(z)=(1-\beta(z-1))^{-1}=(3-2 z)^{-1}
$$

The probability of C equal to zero is:

$$
\operatorname{Pr}(C=0)=P_{N}(\operatorname{Pr}(\tilde{M}=0))=P_{N}(0)=3^{-1}=1 / 3
$$

We can use the recursion formula to calculate $\operatorname{Pr}(C=1)$. The compound geometric recursion formula is:

$$
\begin{aligned}
\operatorname{Pr}(C=n) & =\frac{\beta}{1+\beta \operatorname{Pr}(\tilde{M} \geq 1)} \sum_{j=1}^{n} \operatorname{Pr}(\tilde{M}=j) \operatorname{Pr}(C=n-j) \\
& =\frac{2}{1+2 \times 1}(0.10 \operatorname{Pr}(C=n-1)+0.60 \operatorname{Pr}(C=n-2)+0.30 \operatorname{Pr}(C=n-3))
\end{aligned}
$$

So we have:

$$
\operatorname{Pr}(C=1)=\frac{2}{3}(0.10 \operatorname{Pr}(C=0))=0.02222
$$

As a result, we have:

$$
\operatorname{Pr}(C \geq 2)=1-\operatorname{Pr}(C=0,1)=1-0.33333-0.02222=0.64444
$$

Solution 11.11

Since $N \mid \Lambda$ is Poisson with mean Λ, we know that $E[N \mid \Lambda]=\operatorname{var}(N \mid \Lambda)=\Lambda$ theorem, we have:

$$
\begin{aligned}
& E[N]=E[E[N \mid \Lambda]]=E[\Lambda]=2 \\
& \operatorname{var}(N)=E[\operatorname{var}(N \mid \Lambda)]+\operatorname{var}(E[N \mid \Lambda])=E[\Lambda]+\operatorname{var}(\Lambda)=2+2=4
\end{aligned}
$$

Solution 11.12

We are given:

$$
\begin{aligned}
& \operatorname{Pr}(N \mid \Lambda=\lambda)=e^{-\lambda} \frac{\lambda^{n}}{n!} \text { for } n=0,1,2, \ldots \\
& \operatorname{Pr}(\Lambda=\lambda)=e^{-2} \frac{2^{\lambda}}{\lambda!} \text { for } \lambda=0,1,2, \ldots
\end{aligned}
$$

So the probability that $N=0$ is:

$$
\begin{aligned}
\operatorname{Pr}(N=0) & =\sum_{\lambda=0}^{\infty} \operatorname{Pr}(N=0 \mid \Lambda=\lambda) \operatorname{Pr}(\Lambda=\lambda) \\
& =\sum_{\lambda=0}^{\infty} e^{-\lambda} e^{-2} \frac{2^{\lambda}}{\lambda!}=e^{-2} \sum_{\lambda=0}^{\infty} \frac{\left(2 e^{-1}\right)^{\lambda}}{\lambda!}=e^{-2} e^{2 e^{-1}}=0.28245
\end{aligned}
$$

Solution 11.13

For year 2003 we have ${ }_{03} N_{L}$ is distributed as negative binomial where:

$$
\begin{aligned}
& 6=E\left[{ }_{03} N_{L}\right]=r_{03} \beta_{03}, 24=\operatorname{var}\left(03 N_{L}\right)=r_{03} \beta_{03}\left(1+\beta_{03}\right) \\
& \Rightarrow r_{03}=2, \beta_{03}=3
\end{aligned}
$$

From the results of Section 11.5, a 10% increase in exposure will result in ${ }_{04} N_{L}$ following a negative binomial distribution with $r_{04}=1.10 r_{03}=2.2, \beta_{04}=\beta_{03}=3$.

From results in Chapter 10 we know that $X_{04}=1.04 X_{03}$ will follow a 2-parameter Pareto distribution with parameters $\alpha_{04}=\alpha_{03}=2$ and $\theta_{04}=1.04 \theta_{03}=1.04 \times 500=520$. With an ordinary deductible of 100 per loss in 2004, the probability that a loss event is a payment event is:

$$
v=\operatorname{Pr}\left(X_{04}>100\right)=s_{X_{04}}(100)=\left(\frac{520}{520+100}\right)^{2}=0.70343
$$

From results in Section 11.6 we know that the distribution of claim payments in $2004,04 N_{P}$, is negative binomial with:

$$
r=r_{04}=2.2,{ }_{p} \beta_{04}=3 v=2.11030
$$

Solution 11.14

Since losses are fully reimburse in Year 2003, the expected annual claims payments are:

$$
E\left[{ }_{03} N_{L}\right] E\left[X_{03}\right]=6 \times 500=3,000
$$

The expected annual claims payments in Year 2004 can be computed in 2 different ways:

- $E\left[{ }_{04} N_{L}\right] E\left[\left(X_{04}-100\right)_{+}\right]=(2.2 \times 3)\left(E\left[X_{04}\right]-E\left[X_{04} \wedge 100\right]\right)$

$$
=6.6 \times \underbrace{\left(520-520\left(1-\left(\frac{520}{520+100}\right)^{2-1}\right)\right.}_{\text {Pareto: } \frac{\theta_{04}}{\alpha_{04}-1}\left(1-\left(\frac{\theta_{04}}{\theta_{04}+d}\right)^{\alpha_{04-1}}\right)}=2,878.45
$$

- $E\left[{ }_{04} N_{P}\right] E \underbrace{\left[X_{04}-100 \mid X>100\right]}_{\text {Pareto: } \alpha=2, \theta=620}=(2.2 \times 2.11030) 620=2,878.45$

The percent change is -4.052%.

Solution 11.15

The expected annual claims payments in 2003 are 3,000. The expected annual claims payments in year 2004 with an ordinary deductible of d per loss are:

$$
\begin{gathered}
E\left[{ }_{04} N_{L}\right] E\left[\left(1.04 X_{03}-d\right)_{+}\right]=E\left[{ }_{04} N_{L}\right](E\left[1.04 X_{03}\right]-E[\underbrace{\left(1.04 X_{03}\right)}_{\begin{array}{l}
\text { Pareto: } \alpha=2 \\
\text { and } \theta=520
\end{array}} \wedge d] \\
=(2.2 \times 3)\left(1.04 \times 500-\frac{520}{2-1}\left(1-\left(\frac{520}{520+d}\right)^{2-1}\right)\right)
\end{gathered}
$$

Setting this expression equal to 3,000 results in $d=74.88$.

Solution 11.16

In the original form we have:

$$
\begin{aligned}
& C=M_{1}+\cdots+M_{N} \quad \text { where } N \sim \text { negative binomial } r=\beta=2 \\
& \text { and: } \operatorname{Pr}(M=0)=0.30, \operatorname{Pr}(M=1)=0.40, \operatorname{Pr}(M=2)=0.30
\end{aligned}
$$

Now let $\tilde{M}=M \mid M>0: \operatorname{Pr}(\tilde{M}=1)=(0.40 / 0.70), \operatorname{Pr}(\tilde{M}=2)=(0.30 / 0.70)$. According to the results found in Section 11.6, the frequency of non-zero terms in the original compound sum, \tilde{N}, is negative binomial with parameters:

$$
r=2, \beta^{*}=\beta v=2 \operatorname{Pr}(M>0)=2 \times 0.70=1.4
$$

In the zero-filtered form we have:

$$
C=\tilde{M}_{1}+\cdots+\tilde{M}_{\tilde{N}}
$$

Solution 11.17

From the results in Solution 11.16, we have:

$$
\begin{aligned}
& E[C]=E[\tilde{N}] E[\tilde{M}]=\left(r \beta^{*}\right)\left(1 \times \frac{4}{7}+2 \times \frac{3}{7}\right)=4.0 \\
& \operatorname{var}(C)=\underbrace{E[\tilde{N}]}_{r \beta^{*}=2.8} \underbrace{\operatorname{var}(\tilde{M})}_{\frac{16}{7}-\left(\frac{10}{7}\right)^{2}}+\underbrace{(E[\tilde{M}])^{2}}_{\left(\frac{10}{7}\right)^{2}} \underbrace{\operatorname{var}(\tilde{N})}_{r \beta^{*}\left(1+\beta^{*}\right)=6.72}=14.40
\end{aligned}
$$

Solution 11.18

From the results in Solution 11.16, we have:

$$
\begin{aligned}
& \operatorname{Pr}(C=0)=\operatorname{Pr}(\tilde{N}=0)=\left(\frac{1}{1+\beta^{*}}\right)^{r}=\left(\frac{1}{2.4}\right)^{2}=0.17361 \\
& \operatorname{Pr}(C=1)=\operatorname{Pr}(\tilde{N}=1) \operatorname{Pr}(\tilde{M}=1)=\left(\frac{2}{1}\left(\frac{\beta^{*}}{1+\beta^{*}}\right)^{1}\left(\frac{1}{1+\beta^{*}}\right)^{r}\right) \times \frac{4}{7}=0.11574
\end{aligned}
$$

Solution 11.19

Annual claims payments are $S=X_{1} \wedge 250+\cdots+X_{N_{L}} \wedge 250$. It is easy to compute the moments of the payment per loss variable using the formulas in Tables 10.3 and 10.4:

$$
\begin{aligned}
& E[X \wedge 250]=\theta\left(1-e^{-250 / \theta}\right)=100\left(1-e^{-2.5}\right)=91.79 \quad \text { (See Table 10.3) } \\
& \begin{aligned}
E\left[(X \wedge 250)^{2}\right] & =2 \theta^{2} \Gamma(3 ; 250 / \theta)+250^{2}\left(e^{-250 / \theta}\right) \\
& =20,000\left(1-e^{-2.5}\left(1+2.5+\frac{2.5^{2}}{2!}\right)\right)+250^{2} e^{-2.5}=14,254.05010
\end{aligned}
\end{aligned}
$$

Since the frequency model is Poisson with mean (and variance equal to 20), we have:

$$
\begin{aligned}
& E[S]=20 E[X \wedge 250]=1,835.83 \\
& \operatorname{var}(S)=20 E\left[(X \wedge 250)^{2}\right]=285,081
\end{aligned}
$$

Solution 11.20

The first step is to determine d such that:

$$
E\left[(X-d)_{+}\right]=E[X \wedge 250]=91.79150
$$

Form an exponential distribution formula in Table 10.3, we have:

$$
91.79150=\mathrm{E}\left[(X-d)_{+}\right]=\theta e^{-d / \theta}=100 e^{-d / 100} \Rightarrow d=8.56505
$$

Since the frequency of losses is Poisson, the variance in annual claims payments is:

$$
\begin{aligned}
\operatorname{var}(S) & =20 E\left[(X-d)_{+}^{2}\right]=20 \times \underbrace{\begin{array}{c}
\begin{array}{c}
e^{-d / 100} \\
=0.91792
\end{array} \\
\operatorname{Pr}(X>d)
\end{array}}_{\begin{array}{c}
\text { conditional exponential } \\
\text { second moment is } 2(100)^{2}
\end{array}} \\
& =367,166
\end{aligned}
$$

