

# Actuarial models 

## Solutions to practice questions - Chapter 10

## Solution 10.1

We need only use the Pareto moment formulas given in Section 10.2 in the Pareto summary:

$$
\begin{aligned}
& E\left[X^{k}\right]=\frac{\theta^{k} k!}{(\alpha-1)(\alpha-2) \cdots(\alpha-k)} \text { if } k<\alpha \\
& \alpha=3, \theta=1,000 \Rightarrow E[X]=\frac{1,000}{2}=500, E\left[X^{2}\right]=\frac{1,000^{2} \times 2!}{2 \times 1}=1,000,000 \\
& \Rightarrow \operatorname{var}(X)=1,000,000-500^{2}=750,000
\end{aligned}
$$

## Solution 10.2

The payment per loss is given by:

$$
Y=\left\{\begin{array}{cl}
X & \text { if } X \leq 1,000 \\
1,000 & \text { if } X>1,000
\end{array}\right.
$$

Since $Y$ is a function of $X$ it is straightforward to compute its expected value:

$$
\begin{aligned}
f(x) & =\frac{3 \times 1,000^{3}}{(x+1,000)^{4}} \text { for } x>0 \\
E[Y] & =\int_{0}^{\infty} y f_{X}(x) d x=\int_{0}^{1,000} \frac{3 \times 1,000^{3} x}{(x+1,000)^{4}} d x+\int_{1,000}^{\infty} \frac{3 \times 1,000^{4}}{(x+1,000)^{4}} d x \\
& =\int_{0}^{1,000} \frac{3 \times 1,000^{3}(x+1,000-1,000)}{(x+1,000)^{4}} d x+\int_{1,000}^{\infty} \frac{3 \times 1,000^{4}}{(x+1,000)^{4}} d x \\
& =\int_{0}^{1,000} \frac{3 \times 1,000^{3}}{(x+1,000)^{3}} d x-\int_{0}^{1,000} \frac{3 \times 1,000^{4}}{(x+1,000)^{4}} d x+\int_{1,000}^{\infty} \frac{3 \times 1,000^{4}}{(x+1,000)^{4}} d x \\
& =\left(-\left.\frac{3 \times 1,000^{3}}{2(x+1,000)^{2}}\right|_{0} ^{1,000}\right)-\left(-\left.\frac{3 \times 1,000^{4}}{3(x+1,000)^{3}}\right|_{0} ^{1,000}\right)+\left(-\left.\frac{3 \times 1,000^{4}}{3(x+1,000)^{3}}\right|_{1,000} ^{\infty}\right) \\
& =1,125-875+125=375
\end{aligned}
$$

## Solution 10.3

Note first that $E[X]=e^{\mu+\sigma^{2} / 2}$ according to the moment formula in the lognormal summary. Hence we have:

$$
\begin{aligned}
\operatorname{Pr}\left(X>e^{\mu+\sigma^{2} / 2}\right) & =\operatorname{Pr}\left(\ln (X)>\mu+0.5 \sigma^{2}\right)=\operatorname{Pr}\left(N\left(\mu, \sigma^{2}\right)>\mu+0.5 \sigma^{2}\right) \\
& =\operatorname{Pr}\left(N(0,1)>\frac{\mu+0.5 \sigma^{2}-\mu}{\sigma}\right)=1-\Phi(0.5 \sigma)=1-\Phi(0.5)
\end{aligned}
$$

## Solution 10.4

For both policies \#1 and \#2, the policyholder retains the entire loss amount equal to 75 since there is no reimbursement for a loss less than the deductible. For a loss equal to 150 , the owner of policy $\# 1$ will receive a reimbursement of $150-100=50$. On the other hand, the owner of policy $\# 2$ will be reimbursed for the full 150 loss. Remember that when you have a franchise deductible, then any loss exceeding the deductible is fully reimbursed.

## Solution 10.5

The pdf for the loss amount X is: $f_{X}(x)=0.001$ for $0<x<1,000$.
If there is an ordinary deductible of 100 per loss, then from the ordinary deductible summary in Section 10.3, we have the following:

$$
\left.\begin{array}{rl}
f_{y}(y) & =\left\{\begin{array}{cl}
F_{X}(100) & \text { if } y=0 \quad \text { (the discrete part) } \\
f_{X}(y+100) & \text { if } y>0
\end{array}\right. \text { (the continuous part) }
\end{array}\right\} \begin{array}{ll}
100 / 1,000 & \text { if } y=0 \text { (the discrete part) } \\
0.001 & \text { if } 0<y<900 \text { (the continuous part) }
\end{array}
$$

If there is a franchise deductible of 100 per loss, then from the franchise deductible summary in Section 10.3, we have the following:

$$
\begin{aligned}
f_{Y}(y) & = \begin{cases}F_{X}(100) & \text { if } y=0 \quad \text { (discrete part) } \\
f_{X}(y) & \text { if } y>100 \quad \text { (continuous part) }\end{cases} \\
& =\left\{\begin{array}{cll}
100 / 1,000 & \text { if } y=0 \quad \text { (discrete part) } \\
0.001 & \text { if } 100<y<1,000 \text { (continuous part) }
\end{array}\right.
\end{aligned}
$$

## Solution 10.6

Suppose that there is an ordinary deductible of 100 per loss. From the ordinary deductible summary found in Section 10.3, we have:

$$
\begin{aligned}
f_{Z}(z) & =\frac{f_{X}(z+d)}{s_{X}(d)}=\frac{f_{X}(z+100)}{s_{X}(100)} \text { for } z>0 \\
& =\frac{0.001}{900 / 1,000} \text { for } 0<z<900 \\
& =\frac{1}{900} \text { for } 0<z<900 \quad \text { (a uniform distribution on }[0,900] \text { ) }
\end{aligned}
$$

Suppose that there is a franchise deductible of 100 per loss. From the franchise deductible summary found in Section 10.3, we have:

$$
\begin{aligned}
f_{Z}(z) & =\frac{f_{X}(z)}{s_{X}(d)} \text { for } z>d \\
& =\frac{f_{X}(x)}{s_{X}(100)} \text { for } z>100 \\
& =\frac{0.001}{900} \text { for } 100<z<1,000 \quad \text { (a uniform distribution on }[100,1000] \text { ) }
\end{aligned}
$$

## Solution 10.7

Payment events are the same as loss events when the only loss-limiting feature is a coinsurance factor. So the expected value and variance of the insurance payment per loss (ie the claim payment related to a single loss) are determined as follows:

$$
\begin{aligned}
& Y=0.85 X \Rightarrow E\left[Y^{k}\right]=0.85^{k} E\left[X^{k}\right]=0.85^{k} \times \frac{\theta^{k} k!}{(\alpha-1) \cdots(\alpha-k)} \\
& E[Y]=0.85 \times 500=425, E\left[Y^{2}\right]=0.85^{2} \times 1,000,000=722,500 \\
& \operatorname{var}(Y)=722,500-425^{2}=541,875
\end{aligned}
$$

It would also be possible to use the fact that $Y$ follows a 2-parameter Pareto distribution with the same $\alpha=3$ and with $\theta^{*}=0.85 \theta=850$ since $\theta$ is a scale parameter. However, it is quite simple to solve this problem without any fancy footwork.

## Solution 10.8

We saw in Section 10.3 that the payment per loss can be written as follows:

$$
\begin{aligned}
u & =\frac{L}{\alpha}+d=\frac{425}{0.85}+100=600 \\
Y & =\alpha\left((X-d)_{+}\right)-\alpha\left((X-u)_{+}\right)=0.85\left((X-100)_{+}-(X-600)_{+}\right) \\
& =\alpha(X \wedge u-X \wedge d)=0.85(X \wedge 600-X \wedge 100)
\end{aligned}
$$

## Solution 10.9

We have the general relation $E\left[Y^{k}\right]=E\left[Z^{k}\right] \operatorname{Pr}(Y>0)$. As a result, we have:

$$
\begin{aligned}
\operatorname{var}(Y) & =E\left[Y^{2}\right]-(E[Y])^{2}=E\left[Z^{2}\right] \operatorname{Pr}(Y>0)-(E[Z] \operatorname{Pr}(Y>0))^{2} \\
& =E\left[Z^{2}\right] \operatorname{Pr}(Y>0)-(E[Z])^{2} \operatorname{Pr}(Y>0)^{2} \\
& =E\left[Z^{2}\right] \operatorname{Pr}(Y>0)-(E[Z])^{2}\left(\operatorname{Pr}(Y>0)+\operatorname{Pr}(Y>0)^{2}-\operatorname{Pr}(Y>0)\right) \\
& =\operatorname{var}(Z) \operatorname{Pr}(Y>0)+(E[Z])^{2} \operatorname{Pr}(Y>0)(1-\operatorname{Pr}(Y>0))
\end{aligned}
$$

If $I$ is an indicator for the event $Y>0$, then the last line in the above equations is consistent with the part of the double expectation theorem that would say $\operatorname{var}(Y)=E[\operatorname{var}(Y \mid I)]+\operatorname{var}(E[Y \mid I])$.
Notice that $E[Y \mid I=0]=\operatorname{var}(Y \mid I=0)=0$ since you are given that $Y=0$, and that $E[Y \mid I=1]=E[Z]$, and $\operatorname{var}(Y \mid I=1)=\operatorname{var}(Z)$ since $Z=Y$ when $Y>0$. The point of this exercise is for you to notice that you do not have $\operatorname{var}(Y)$ equal to $\operatorname{var}(Z) \operatorname{Pr}(Y>0)$.

## Solution 10.10

The Pareto survival function is (see Section 10.2):

$$
s_{X}(x)=\left(\frac{\theta}{x+\theta}\right)^{\alpha}
$$

So from Theorem 10.3, we have:

$$
\begin{aligned}
E[X \wedge d] & =\int_{0}^{d} s_{X}(x) d x=\int_{0}^{d}\left(\frac{\theta}{x+\theta}\right)^{\alpha} d x=\theta^{\alpha}\left(-\left.\frac{1}{(x+\theta)^{\alpha-1}(\alpha-1)}\right|_{0} ^{d}\right) \\
& =\frac{\theta}{(\alpha-1)}\left(\frac{\theta^{\alpha-1}}{\theta^{\alpha-1}}-\frac{\theta^{\alpha-1}}{(d+\theta)^{\alpha-1}}\right)=\frac{\theta}{(\alpha-1)}\left(1-\left(\frac{\theta}{d+\theta}\right)^{\alpha-1}\right)
\end{aligned}
$$

## Solution 10.11

Note first that we have:

$$
\begin{align*}
& Y=X \wedge 2,600-X \wedge 100 \quad(\text { Table 10.1) } \\
& E[X \wedge d]=\theta\left(1-e^{-d / \theta}\right)=2,000\left(1-e^{-d / 2,000}\right) \tag{Table10.3}
\end{align*}
$$

From these formulas we have:

$$
E[Y]=E[X \wedge 2600]-E[X \wedge 100]=2,000\left(\left(1-e^{-2,600 / 2,000}\right)-\left(1-e^{-100 / 2,000}\right)\right)=1,357.40
$$

We also have $\operatorname{Pr}(Y>0)=\operatorname{Pr}(X>100)=e^{-100 / 2,000}=0.95123$, so $E[Z]=E[Y] / 0.95123=1,427.00$

## Solution 10.12

From the given information, we have:

$$
f(x)= \begin{cases}0.40 f_{1}(x) & \text { if } 0<x \leq 1,000 \\ 0.60 f_{2}(x) & \text { if } 1,000<x\end{cases}
$$

where:

$$
\begin{aligned}
& f_{1}(x)=0.001 \text { for } 0<x \leq 1,000 \quad \text { (uniform) } \\
& f_{2}(x)=\frac{2 \times 1,000^{2}}{x^{3}} \text { for } 1,000<x \quad \text { (single parameter Pareto) }
\end{aligned}
$$

We want to calculate:

$$
\begin{aligned}
E[Y] & =E[X \wedge 2,000]=\int_{0}^{2,000} x f(x) d x+\int_{2,000}^{\infty} 2,000 f(x) d x \\
& =0.4 \underbrace{\int_{0}^{1,000} 0.001 x d x}_{E\left[X_{1}\right]=1,000 / 2}+0.6 \underbrace{\left(\int_{1,000}^{2,000} \frac{2 \times 1,000^{2} x}{x^{3}} d x+2,000 \operatorname{Pr}(X>2,000)\right)}_{E\left[X_{2} \wedge 2,000\right]} \\
& =200+0.6\left(-\left.\frac{2 \times 1,000^{2}}{x}\right|_{1,000} ^{2,000}+2,000\left(\frac{1,000}{2,000}\right)^{2}\right)=1,100
\end{aligned}
$$

## Solution 10.13

Using the same data as in Solution 10.12 we need to calculate $E\left[Y^{2}\right]$ :

$$
\begin{aligned}
E\left[Y^{2}\right] & =E\left[(X \wedge 2,000)^{2}\right]=\int_{0}^{2,000} x^{2} f(x) d x+\int_{2,000}^{\infty} 2,000^{2} f(x) d x \\
& =0.4 \underbrace{\int_{0}^{1,000} 0.001 x^{2} d x}_{1,000^{2} / 3}+0.6 \underbrace{\left(\int_{1,000}^{2,000} \frac{2 \times 1,000^{2} x^{2}}{x^{3}} d x+2,000^{2} \operatorname{Pr}(X>2,000)\right)}_{E\left[\left(X_{2} \wedge 2,000\right)^{2}\right]} \\
& =133,333.33+0.6\left(2 \times 1,\left.000^{2} \ln (x)\right|_{1,000} ^{2,000}+2,000^{2}\left(\frac{1,000}{2,000}\right)^{2}\right) \\
& =1,565,110
\end{aligned}
$$

Using the result in Solution 10.12, we have:

$$
\operatorname{var}(Y)=1,565,110-1,100^{2}=355,110
$$

For aggregate annual claims we have $S=\Upsilon_{1}+\cdots+\Upsilon_{N_{L}}$ :

$$
\begin{aligned}
& E[S]=E\left[N_{L}\right] E[Y]=80 \times 1,100=88,000 \\
& \operatorname{var}(S)=E\left[N_{L}\right] \operatorname{var}(Y)+(E[Y])^{2} \operatorname{var}\left(N_{L}\right) \\
& \quad=80 \times 355,110+(1,100)^{2} \times 120=173,608,800
\end{aligned}
$$

## Solution 10.14

The first thing we need to do is compute the gamma parameters:

$$
E[X]=\alpha \theta=100, \operatorname{var}(X)=\alpha \theta^{2}=5,000 \Rightarrow \alpha=2, \theta=50
$$

With an ordinary deductible of $d=50$ the payment per loss is $Y=(X-50)_{+}$. Using Theorem 10.2 and Table 10.3, we have an expected payment per loss given by:

$$
\begin{aligned}
E[X \wedge 50] & =\alpha \theta \Gamma(\alpha+1 ; d / \theta)+d(1-\Gamma(\alpha ; d / \theta)) \\
& =100 \Gamma(3 ; 50 / 50)+50(1-\Gamma(2 ; 50 / 50)) \\
& =100\left(1-e^{-1}\left(1+1+1^{2} / 2!\right)\right)+50\left(e^{-1}(1+1)\right)=44.82 \\
E[Y] & =E[X]-E[X \wedge 50]=100-44.82=55.18
\end{aligned}
$$

To compute the expected payment per payment event we must divide $E[Y]$ by:

$$
\begin{aligned}
& \operatorname{Pr}(Y>0)=\operatorname{Pr}(X>50)=1-\Gamma(\alpha=2 ; 50 / \theta=1)=1-\left(1-e^{-1}(1+1)\right)=0.73576 \\
& E[Z]=E[Y] / 0.7356=75
\end{aligned}
$$

With a franchise deductible of $d=50$ the payment per loss is $Y=(X-50)_{+}+50 I_{50}(X)$ where $I_{50}(X)$ is an indicator for the event $X>50$. So the expected payment per loss is:

$$
E[Y]=E\left[(X-50)_{+}\right]+50 \operatorname{Pr}(X>50)=91.97
$$

The expected payment per payment event is thus:

$$
E[Z]=\frac{E[Y]}{\operatorname{Pr}(Y>0)}=\frac{E\left[(X-50)_{+}\right]+50 \operatorname{Pr}(X>50)}{\operatorname{Pr}(X>50)}=\frac{E\left[(X-50)_{+}\right]}{\operatorname{Pr}(X>50)}+50=75+50=125
$$

## Solution 10.15

You will need the expected limited loss formula for the Pareto family:

$$
\begin{aligned}
& E[X \wedge d]=\frac{\theta}{\alpha-1}\left(1-\left(\frac{\theta}{d+\theta}\right)^{\alpha-1}\right)=\frac{500}{1}\left(1-\left(\frac{500}{600}\right)^{1}\right)=\frac{500}{6} \\
& \mathrm{LER}=\frac{E[X \wedge 100]}{E[X]}=\frac{500 / 6}{500}=\frac{1}{6}
\end{aligned}
$$

The easiest way to calculate the MEL $=E[X-100 \mid X>100]$ is to use the fact that $X-100 \mid X>100$ follows a 2parameter Pareto distribution with $\alpha=2, \theta^{*}=\theta+100=600$. So we have:

$$
\mathrm{MEL}=E[X-100 \mid X>100]=\frac{\theta^{*}}{\alpha-1}=600
$$

## Solution 10.16

Using the results in Solution 10.15, the expected payment per loss this year is:

$$
E\left[(X-100)_{+}\right]=E[X]-E[X \wedge 100]=500-\frac{500}{6}=416.67
$$

We are asked to calculate $E\left[(1.1 X-100)_{+}\right]$as the expected payment per loss next year:

Option 1. Use the fact that $1.1 X$ is Pareto with $\alpha=2, \theta^{*}=1.1(500)=550$. Therefore, we have:

$$
\begin{aligned}
& E[1.1 X \wedge 100]=\frac{\theta^{*}}{\alpha-1}\left(1-\left(\frac{\theta^{*}}{\theta^{*}+100}\right)^{\alpha-1}\right)=550\left(1-\left(\frac{550}{650}\right)\right)=84.62 \\
& E\left[(1.1 X-100)_{+}\right]=E[X]-E[1.1 X \wedge 100]=550-84.62=465.38 \\
& \text { Percent Increase }=100\left(\frac{465.38}{416.67}-1\right)=11.7 \%
\end{aligned}
$$

Option 2. Factor out the 1.1:

$$
\begin{aligned}
E\left[(1.1 X-100)_{+}\right] & =1.1 E\left[\left(X-\frac{100}{1.1}\right)_{+}\right]=1.1\left(E[X]-E\left[X \wedge \frac{100}{1.1}\right]\right) \\
& =1.1\left(\frac{500}{2-1}-\frac{500}{2-1}\left(1-\left(\frac{500}{500+(100 / 1.1)}\right)\right)\right)=465.38
\end{aligned}
$$

## Solution 10.17

The payment per loss is $Y=X \wedge 500$. The variance of $Y$ can be computed with the help of the limited loss moments for the gamma distribution that are found in Tables 10.3 and 10.4:

$$
\begin{aligned}
& E[X \wedge d]=\alpha \theta \Gamma(\alpha+1 ; d / \theta)+d(1-\Gamma(\alpha ; d / \theta)) \\
& E\left[(X \wedge d)^{2}\right]=\alpha(\alpha+1) \theta^{2} \Gamma(\alpha+2 ; d / \theta)+d^{2}(1-\Gamma(\alpha ; d / \theta))
\end{aligned}
$$

Since $\alpha=2, \theta=250$, and $d=500$, we have:

$$
\begin{aligned}
& \Gamma(\alpha ; d / \theta)=\Gamma(2 ; 2)=1-e^{-2}\left(1+\frac{2^{1}}{1!}\right)=0.59399 \\
& \Gamma(\alpha+1 ; d / \theta)=\Gamma(3 ; 2)=1-e^{-2}\left(1+\frac{2^{1}}{1!}+\frac{2^{2}}{2!}\right)=0.32332 \\
& \Gamma(\alpha ; d / \theta)=\Gamma(4 ; 2)=1-e^{-2}\left(1+\frac{2^{1}}{1!}+\frac{2^{2}}{2!}+\frac{2^{3}}{3!}\right)=0.14288 \\
& E[X \wedge 500]=500 \Gamma(3 ; 2)+500(1-\Gamma(2 ; 2))=364.66 \\
& E\left[(X \wedge 500)^{2}\right]=2(3) 250^{2} \Gamma(4 ; 2)+500^{2}(1-\Gamma(2 ; 2))=155.080 .16 \\
& \operatorname{var}(Y)=22,100
\end{aligned}
$$

## Solution 10.18

The payment per loss is $Y=(X-50)_{+}-(X-550)_{+}$since $u=d+L / \alpha=50+500 / 1=550$. For an exponential distribution we have:

$$
\begin{aligned}
& E\left[(X-d)_{+}\right]=E[X]-E[X \wedge d]=\theta-\theta\left(1-e^{-d / \theta}\right)=\theta e^{-d / \theta} \\
& E[Y]=E\left[(X-50)_{+}\right]-E\left[(X-550)_{+}\right]=500\left(e^{-0.1}-e^{-1.1}\right)=285.98
\end{aligned}
$$

From part (iv) of Theorem 10.4, we have:

$$
\begin{aligned}
& E\left[Y^{2}\right]= E\left[\left((X-50)_{+}\right)^{2}\right]-E\left[\left((X-550)_{+}\right)^{2}\right]-2(550-50) E\left[(X-550)_{+}\right] \\
&=\underbrace{E\left[(X-50)^{2} \mid X>50\right]}_{\begin{array}{c}
2\left(500^{2}\right) \text { conditional } \\
\text { exponential distribution }
\end{array}} \underbrace{\operatorname{Pr}(X>50)}_{e^{-50 / 500}}-\underbrace{E\left[(X-550)^{2} \mid X>550\right]}_{\begin{array}{c}
2\left(500^{2}\right) \text { conditional } \\
\text { exponential distribution }
\end{array}} \underbrace{\operatorname{Pr}(X>550)}_{e^{-550 / 500}} \\
&-1,000 \underbrace{E[X-550 \mid X>550]}_{\begin{array}{c}
500 \text { conditional } \\
\text { exponential distribution }
\end{array}} \underbrace{\operatorname{Pr}(X>550)}_{e^{-550 / 500}}
\end{aligned}
$$

We now have $\operatorname{var}(Y)=37,761.25$. Aggregate annual claims are $S=Y_{1}+\cdots+Y_{N_{L}}$ where $E\left[N_{L}\right]=50$ and $\operatorname{var}\left(N_{L}\right)=100$. From compound sum moment formulas we have:

$$
\begin{aligned}
E[S]= & E\left[N_{L}\right] E[Y]=50 \times 285.98=14,299.16 \\
\operatorname{var}(S) & =E\left[N_{L}\right] \operatorname{var}(Y)+(E[Y])^{2} \operatorname{var}\left(N_{L}\right) \\
& =50 \times 37,761.25+(285.98)^{2} \times 100=10,066,700
\end{aligned}
$$

## Solution 10.19

Using results from Solution 10.18, we have:

$$
\begin{aligned}
\operatorname{Pr}(S>1.25 E[S]) & =\operatorname{Pr}\left(\frac{S-E[S]}{\sqrt{\operatorname{var}(S)}}>\frac{1.25 E[S]-E[S]}{\sqrt{\operatorname{var}(S)}}\right) \approx 1-\Phi\left(\frac{0.25 E[S]}{\sqrt{\operatorname{var}(S)}}\right) \\
& =1-\Phi(1.13) \approx 1-(0.7 \Phi(1.1)+0.3 \Phi(1.2))=0.130
\end{aligned}
$$

## Solution 10.20

We saw in Solution 10.14 that $\alpha=2$ and $\theta=50$. We also calculated $E\left[(X-50)_{+}\right]=55.18$. Here is another way to duplicate the expected value calculation and to speed up the second moment calculation. We will identify the distribution of $Z=X-50 \mid X>50$ as a $50 / 50$ mixture of an exponential with $\theta=50$ and a gamma with $\alpha=2$ and $\theta=50$ :

$$
\begin{aligned}
& Z=X-50 \mid X>50 \\
& s_{Z}(z)={ }_{z} p_{50}=\frac{s_{X}(50+z)}{s_{X}(50)}=\frac{1-\Gamma(2 ;(50+z) / 50)}{1-\Gamma(2 ; 50 / 50)}=\frac{\left.e^{-(50+z) / 50\left(1+\frac{((50+z) / 50)^{1}}{1!}\right.}\right)}{e^{-50 / 50}\left(1+\frac{1^{1}}{1!}\right)} \\
& \quad=e^{-z / 50}\left(\frac{2+z / 50}{2}\right)=0.50 e^{-z / 50}+0.50 e^{-z / 50}(1+z / 50)
\end{aligned}
$$

This final expression is a weighted average of an exponential survival function and a gamma survival function. So moments about the origin of $Z$ can be computed as weighted averages of exponential and gamma moments:

$$
\begin{aligned}
& E[Z]=0.50(50)+0.50(100)=75 \\
& E\left[Z^{2}\right]=0.50\left(2 \times 50^{2}\right)+0.50\left(2 \times 3 \times 50^{2}\right)=10,000
\end{aligned}
$$

Now multiply by $\operatorname{Pr}(Y>0)=\operatorname{Pr}(X>50)=1-\Gamma(2 ; 50 / 50)=0.73576$ to obtain moments of $Y$ :

$$
\begin{aligned}
& E[Y]=0.73576 \times E[Z]=55.18, \quad E\left[Y^{2}\right]=0.75376 \times E\left[Z^{2}\right]=7,357.59 \\
& \operatorname{var}(Y)=4,312.54
\end{aligned}
$$

