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Solution 10.1   
 
We need only use the Pareto moment formulas given in Section 10.2 in the Pareto summary: 
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Solution 10.2   
 
The payment per loss is given by: 
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Since Y is a function of X it is straightforward to compute its expected value: 
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Solution 10.3   
 

 Note first that [ ]
2 /2E X e µ σ+=  according to the moment formula in the lognormal summary. Hence we have: 
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Solution 10.4   
 
For both policies #1 and #2, the policyholder retains the entire loss amount equal to 75 since there is no 
reimbursement for a loss less than the deductible. For a loss equal to 150, the owner of policy #1 will receive a 
reimbursement of 150 100 50− = . On the other hand, the owner of policy #2 will be reimbursed for the full 150 
loss. Remember that when you have a franchise deductible, then any loss exceeding the deductible is fully 
reimbursed.  

 

Solution 10.5   
 
The pdf for the loss amount X is: ( ) 0.001  for  0 1,000Xf x x= < < .  
If there is an ordinary deductible of 100 per loss, then from the ordinary deductible summary in Section 10.3, we 
have the following: 
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If there is a franchise deductible of 100 per loss, then from the franchise deductible summary in Section 10.3, we 
have the following: 
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Solution 10.6   
 
Suppose that there is an ordinary deductible of 100 per loss. From the ordinary deductible summary found in 
Section 10.3, we have: 
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Suppose that there is a franchise deductible of 100 per loss. From the franchise deductible summary found in 
Section 10.3, we have: 
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Solution 10.7   
 
Payment events are the same as loss events when the only loss-limiting feature is a coinsurance factor. So the 
expected value and variance of the insurance payment per loss (ie the claim payment related to a single loss) are 
determined as follows: 
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It would also be possible to use the fact that Y follows a 2-parameter Pareto distribution with the same 3α =  and 
with * 0.85 850θ θ= =  since θ  is a scale parameter. However, it is quite simple to solve this problem without any 
fancy footwork.  

 

Solution 10.8   
 
We saw in Section 10.3 that the payment per loss can be written as follows: 
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Solution 10.9   
 
We have the general relation ( )Pr 0k kE Y E Z Y   = >    . As a result, we have: 
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If Ι  is an indicator for the event 0Y > , then the last line in the above equations is consistent with the part of the 

double expectation theorem that would say ( ) ( ) ( )var var | var |Y E Y I E Y I = +     .  

Notice that ( )| 0 var | 0 0E Y I Y I= = = =    since you are given that 0Y = , and that [ ]| 1E Y I E Z= =   , and 

( ) ( )var | 1 varY I Z= =  since Z Y=  when 0Y > . The point of this exercise is for you to notice that you do not have 

( )var Y  equal to ( ) ( )var Pr 0Z Y > . 

 

Solution 10.10   
 
The Pareto survival function is (see Section 10.2): 
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So from Theorem 10.3, we have: 
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Solution 10.11   
 
Note first that we have: 
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From these formulas we have: 
 

 [ ] [ ] [ ] ( ) ( )( )2,600 /2,000 100/2,0002600 100 2,000 1 1 1, 357.40E Y E X E X e e− −= ∧ − ∧ = − − − =  

 
We also have ( ) ( ) 100/2,000Pr 0 Pr 100 0.95123Y X e−> = > = = , so [ ] [ ]/0.95123 1, 427.00E Z E Y= =  

 

Solution 10.12   
 
From the given information, we have: 
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We want to calculate: 
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Solution 10.13   
 
Using the same data as in Solution 10.12 we need to calculate 2E Y 

  : 

 

 

( ) ( ) ( )

( )

( )
2

2
2

2,00022 2 2
0 2,000

2 21,000 2,0002 2
30 1,000

1,000 /3
2,000

2,000 2,000

2 1,000
0.4 0.001 0.6 2,000 Pr 2,000

133, 333.33 0.6 2

E X

E Y E X x f x dx f x dx

x
x dx dx X

x

∞

 ∧  

   = ∧ = +   

 ×
= + + >  

 

= +

∫ ∫

∫ ∫

( )
22,0002 2

1,000

1,0001,000 ln 2,000
2,000

1, 565,110

x
   × +     

=

 

Using the result in Solution 10.12, we have: 
 
 ( ) 2var 1, 565,110 1,100 355,110Y = − =  
 
For aggregate annual claims we have 1 LNS Y Y= + + : 
 

 

[ ] [ ] [ ]

( ) [ ] ( ) [ ]( ) ( )
( )

2

2

80 1,100 88,000

var var var

80 355,110 1,100 120 173,608,800

L

L L

E S E N E Y

S E N Y E Y N

= = × =

= +

= × + × =

 

 

Solution 10.14   
 
The first thing we need to do is compute the gamma parameters: 
 
 [ ] ( ) 2100 , var 5,000 2 , 50E X Xαθ αθ α θ= = = = ⇒ = =  
 
With an ordinary deductible of 50d =  the payment per loss is ( )50Y X += − . Using Theorem 10.2 and Table 10.3, 
we have an expected payment per loss given by: 
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To compute the expected payment per payment event we must divide [ ]E Y  by: 
 

 
( ) ( ) ( ) ( )( )

[ ] [ ]

1Pr 0 Pr 50 1 2 ; 50/ 1 1 1 1 1 0.73576

/0.7356 75

Y X e

E Z E Y

α θ −> = > = −Γ = = = − − + =

= =
 



Solutions to practice questions – Chapter 10 Actuarial models 

© BPP Professional Education 7

 
With a franchise deductible of 50d =  the payment per loss is ( ) ( )5050 50Y X I X+= − +  where ( )50I X  is an 
indicator for the event 50X > . So the expected payment per loss is: 
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The expected payment per payment event is thus: 
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Solution 10.15   
 
You will need the expected limited loss formula for the Pareto family: 
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The easiest way to calculate the MEL 100| 100E X X= − >    is to use the fact that 100| 100X X− >  follows a 2-
parameter Pareto distribution with 2 , * 100 600α θ θ= = + = . So we have: 
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Solution 10.16   
 
Using the results in Solution 10.15, the expected payment per loss this year is: 
 

 ( ) [ ] [ ] 500100 100 500 416.67
6

E X E X E X+
 − = − ∧ = − =   

 
We are asked to calculate ( )1.1 100E X +
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Option 2. Factor out the 1.1: 
   

  

( ) [ ]

( )

100 1001.1 100 1.1 1.1
1.1 1.1

500 500 5001.1 1 465.38
2 1 2 1 500 100/1.1

E X E X E X E X+
+

       − = − = − ∧            
   
 = − − =     − − +   

 

 

Solution 10.17   
 
The payment per loss is 500Y X= ∧ . The variance of Y can be computed with the help of the limited loss 
moments for the gamma distribution that are found in Tables 10.3 and 10.4: 
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Since 2α = , 250θ = , and 500d = , we have: 
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Solution 10.18   
 
The payment per loss is ( ) ( )50 550Y X X+ += − − −  since / 50 500 /1 550u d L α= + = + = . For an exponential 
distribution we have: 
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From part (iv) of Theorem 10.4, we have: 
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We now have ( )var 37,761.25Y = . Aggregate annual claims are 1 LNS Y Y= + +  where [ ] 50LE N =  and 

( )var 100LN = . From compound sum moment formulas we have: 
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Solution 10.19   
 
Using results from Solution 10.18, we have: 
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Solution 10.20   
 
We saw in Solution 10.14 that 2α =  and 50θ = . We also calculated ( )50 55.18E X +

 − =  . Here is another way to 

duplicate the expected value calculation and to speed up the second moment calculation. We will identify the 
distribution of 50| 50Z X X= − >  as a 50/50 mixture of an exponential with 50θ =  and a gamma with 2α =  and 

50θ = : 
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This final expression is a weighted average of an exponential survival function and a gamma survival function. 
So moments about the origin of Z can be computed as weighted averages of exponential and gamma moments: 
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Now multiply by ( ) ( ) ( )Pr 0 Pr 50 1 2 ;50/50 0.73576Y X> = > = − Γ =  to obtain moments of Y: 
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