

Actuarial models

Solutions to practice questions - Chapter 1

Solution 1.1

$$
\begin{aligned}
& { }_{2} p_{0}=\frac{l_{2}}{l_{0}}=\frac{985}{1,000},{ }_{2 \mid} q_{0}=\frac{d_{2}}{l_{0}}=\frac{3}{1,000},{ }_{4 \mid} q_{3}=\frac{l_{7}-l_{9}}{l_{3}}=\frac{9}{982} \\
& p_{4}=\frac{l_{5}}{l_{4}}=\frac{976}{979}, q_{5}=\frac{d_{5}}{l_{5}}=\frac{4}{976}
\end{aligned}
$$

Solution 1.2

The probability ${ }_{2} \mid q_{1}=0.015$ is the probability that a life currently age 1 will die between ages 3 and 4 . View each of the 20 lives age 1 in the group as a trial, where 'success' means that the life dies between ages 3 and 4 . Then the random number of deaths follows a binomial distribution with $n=20$ trials and $p=2 \mid q_{1}=0.015$. The expected number of deaths is $n p=0.30$ and the variance in the number of deaths is $n p q=0.29550$.

Solution 1.3

The probability function is: $\operatorname{Pr}(K=k)=d_{k} / l_{0}$. From the table we have:

$$
l_{0}=100, d_{0}=l_{0}-l_{1}=54, d_{1}=27, d_{2}=13, d_{3}=6
$$

So it follows that $\operatorname{Pr}(K=0)=54 / 100, \operatorname{Pr}(K=1)=27 / 100$, and so on.

Solution 1.4

If you are given a formula for the force function, then the survival function is the obvious choice for the first calculation:

$$
\begin{aligned}
& \mu(x)=\frac{3}{2+x} \Rightarrow \int_{0}^{x} \mu(y) d y=\left.(3 \ln (2+y))\right|_{0} ^{x}=\left(\ln \left(\frac{2+x}{2}\right)\right)^{3} \Rightarrow \\
& s_{X}(x)=\exp \left(-\int_{0}^{x} \mu(y) d y\right)=\left(\frac{2}{2+x}\right)^{3} \Rightarrow F_{X}(x)=1-s_{X}(x)=1-\left(\frac{2}{2+x}\right)^{3} \Rightarrow \\
& f_{X}(x)=F_{x}^{\prime}(x)=\frac{2^{3} \times 3}{(2+x)^{4}}
\end{aligned}
$$

Solution 1.5

$$
\begin{aligned}
& p_{1}=\frac{l_{2}}{l_{1}}=\frac{s_{X}(2)}{s_{X}(1)}=\frac{(2 /(2+2))^{3}}{(2 /(2+1))^{3}}=\left(\frac{3}{4}\right)^{3}=\frac{27}{64} \\
& 2 \left\lvert\, q_{1}=\frac{l_{3}-l_{4}}{l_{1}}=\frac{s_{X}(3)-s_{X}(4)}{s_{X}(1)}=\frac{\left(\frac{2}{5}\right)^{3}-\left(\frac{2}{6}\right)^{3}}{\left(\frac{2}{3}\right)^{3}}=\frac{91}{1,000}\right.
\end{aligned}
$$

Solution 1.6

$$
\begin{aligned}
& \mu(x)=\frac{0.5}{100-x} \Rightarrow \int_{0}^{x} \mu(y) d y=0.5\left(-\left.\ln (100-y)\right|_{0} ^{x}\right)=\ln \left(\left(\frac{100}{100-x}\right)^{0.5}\right) \Rightarrow \\
& s_{X}(x)=\exp \left(-\ln \left(\left(\frac{100}{100-x}\right)^{0.5}\right)\right)=\left(\frac{100-x}{100}\right)^{0.5} \Rightarrow F_{X}(x)=1-\left(\frac{100-x}{100}\right)^{0.5} \Rightarrow \\
& f_{X}(x)=\frac{1}{20(100-x)^{0.5}}
\end{aligned}
$$

Solution 1.7

$$
\begin{aligned}
& s_{X}(x)=\left(\frac{100-x}{100}\right)^{0.5} \Rightarrow 20 p_{40}=\frac{s_{X}(60)}{s_{X}(40)}=\sqrt{\frac{40}{60}}=0.81650 \\
& \left.{ }^{20}\right|_{20} q_{40}=20 p_{40} \times\left(1-{ }_{20} p_{60}\right)=\sqrt{\frac{40}{60}} \times\left(1-\sqrt{\frac{20}{40}}\right)=0.23915
\end{aligned}
$$

Solution 1.8

$$
\begin{aligned}
& \mu(x)=\frac{1.1}{100+x} \Rightarrow \int_{0}^{x} \mu(y) d y=1.1 \ln \left(\frac{100+x}{100}\right) \Rightarrow \\
& s_{X}(x)=\exp \left(-1.1 \ln \left(\frac{100+x}{100}\right)\right)=\left(\frac{100}{100+x}\right)^{1.1} \Rightarrow \\
& { }_{t} p_{20}=\frac{s_{X}(20+t)}{s_{X}(20)}=\left(\frac{100}{100+20+t}\right)^{1.1} /\left(\frac{100}{100+20}\right)^{1.1}=\left(\frac{120}{120+t}\right)^{1.1}
\end{aligned}
$$

Solution 1.9

For the curtate lifetime at age 20 to be less than 2 , we must have $K(20)=0$ or 1 . That means that (20) must die within 2 years. The probability is 1 minus the probability of surviving the next 2 years:

$$
2 q_{20}=\operatorname{Pr}(K(20)=0 \text { or } 1)=1-s_{T(20)}(2)=1-\left(\frac{120}{122}\right)^{1.1}=0.01802
$$

Solution 1.10

$$
\begin{aligned}
& \mu(x)=0.015 \Rightarrow s_{X}(x)=\exp \left(-\int_{0}^{x} 0.015 d y\right)=e^{-0.015 x} \Rightarrow \\
& f_{T(20)}(t)={ }_{t} p_{20} \mu(20+t)=\frac{s_{X}(20+t)}{s_{X}(20)} \times \mu(20+t)=\frac{0.015 e^{-0.015(20+t)}}{e^{-0.015 \times 20}}=0.015 e^{-0.015 t}
\end{aligned}
$$

Solution 1.11

Start by computing a formula for the probability function:

$$
\operatorname{Pr}(K(20)=k)={ }_{k} \mid q_{20}={ }_{k} p_{20}-{ }_{k+1} p_{20}=e^{-0.015(k)}-e^{-0.015(k+1)}=\left(1-e^{-0.015}\right)\left(e^{-0.015 k}\right)
$$

The probability that the curtate lifetime exceeds 1 is:

$$
1-\operatorname{Pr}(K(20)=0)-\operatorname{Pr}(K(20)=1)=1-\left(1-e^{-0.015}\right)-\left(1-e^{-0.015}\right) e^{-0.015}=0.97045
$$

Note: You could have just as easily used $\operatorname{Pr}(K(20) \geq 2)=e^{-2 \times 0.015}$.

Solution 1.12

$$
l_{x}=1,000(100-x)^{0.95} \Rightarrow T_{x}=\int_{x}^{100} l_{y} d y=1,\left.000\left(-\frac{(100-x)^{1.95}}{1.95}\right)\right|_{x} ^{100}=\frac{1,000(100-x)^{1.95}}{1.95}
$$

Solution 1.13

Use the formula developed in Solution 1.12 and the fact that $T_{20}-T_{25}$ is the number of people-years between ages 20 and 25 lived by the l_{20} lives that survive to age 20 :

$$
\stackrel{\circ}{e}_{20: 51}=\frac{T_{20}-T_{25}}{l_{20}}=\frac{\frac{1,000(80)^{1.95}}{1.95}-\frac{1,000(75)^{1.95}}{1.95}}{1,000(80)^{0.95}}=\frac{80^{1.95}-75^{1.95}}{1.95 \times 80^{0.95}}=4.85141
$$

Solution 1.14

$$
\begin{aligned}
& \mu(x)=0.015 \Rightarrow{ }_{t} p_{x}=e^{-0.015 t} \Rightarrow \stackrel{\circ}{e}_{x: 1}=\int_{0}^{1} t p_{x} d t=\frac{1-e^{-0.015}}{0.015}=0.99254 \Rightarrow \\
& a(x)=\frac{\stackrel{\circ}{e}_{x: 11}-p_{x}}{q_{x}}=\frac{0.99254-e^{-0.015}}{1-e^{-0.015}}=0.49875
\end{aligned}
$$

Note: When the force of mortality is constant, on average, deaths during a given year of age occur slightly before mid-year.

Solution 1.15

$$
\begin{aligned}
& q_{20}=1-p_{20}=1-e^{-0.015}=0.01489 \\
& m_{20}=\frac{\int_{0}^{1} t p_{20} \mu(20+t) d t}{\int_{0}^{1}{ }_{t} p_{20} d t}=\frac{\int_{0}^{1} t p_{20} 0.015 d t}{\int_{0}^{1}{ }_{t} p_{20} d t}=0.01500
\end{aligned}
$$

Note. When the force of mortality is constant, the central rate at age x is the same as the force.

Solution 1.16

$$
l_{x}=1,000(100-x)^{0.75} \Rightarrow \mu(x)=\frac{-l_{x}^{\prime}}{l_{x}} \Rightarrow l_{x} \mu(x)=-l_{x}^{\prime}=750 /(100-x)^{0.25}
$$

Solution 1.17

$$
\begin{aligned}
& q_{30}=0.01, q_{31}=0.02, q_{32}=0.03 \text { and the UDD } \Rightarrow \\
& \mu(31.4)=\mu(31+0.4)=\frac{q_{31}}{1-0.4 q_{31}}=\frac{0.02}{1-0.4 \times 0.02}=0.02016 \\
& 1.4 p_{30}=p_{30} \times{ }_{0.4} p_{31}=(1-0.01)(1-0.4 \times 0.02)=0.98208 \\
& f_{T(30)}(1.4)={ }_{1.4} p_{30} \mu(31.4)=0.01980
\end{aligned}
$$

Solution 1.18

A person age 30 who survives 3 years gets credit for 3 years of life in both $e_{30: 37}$ and $\stackrel{\circ}{30: 31}$. A person who dies during the next 3 years gets more credit in the calculation of $\dot{e}_{30: 31}$ for part of the final year of life. Since $a(x)=0.5$ for all ages under the UDD assumption, it seems reasonable that $\dot{e}_{30: 31}=e_{30: 31}+0.5_{3} q_{30}$.

$$
\begin{aligned}
& e_{30: 3}=p_{30}+{ }_{2} p_{30}+{ }_{3} p_{30}=0.99+(0.99 \times 0.98)+(0.99 \times 0.98 \times 0.97)=2.90129 \\
& \stackrel{\circ}{30: 37}=e_{30: 37}+0.5{ }_{3} q_{30}=2.90129+0.5 \times(1-0.99 \times 0.98 \times 0.97)=2.93075
\end{aligned}
$$

Solution 1.19

$$
\begin{aligned}
l_{x}=1, & 000 e^{-0.02 x} \Rightarrow p_{x}=l_{x+1} / l_{x}=e^{-0.02} \text { for all } x \\
{ }_{3} q_{[20]} & =1-{ }_{3} p_{[20]}=1-p_{[20]} \times p_{[20]+1} \times p_{22} \\
& =1-\left(1-0.8 q_{20}\right)\left(1-0.9 q_{21}\right) p_{22} \\
& =1-\left(1-0.8\left(1-p_{20}\right)\right)\left(1-0.9\left(1-p_{21}\right)\right) p_{22} \\
& =1-\left(1-0.8\left(1-e^{-0.02}\right)\right)\left(1-0.9\left(1-e^{-0.02}\right)\right) p_{22} \\
& =0.05252
\end{aligned}
$$

Solution 1.20

$$
l_{[20]}=\frac{l_{22}}{2 p_{[20]}}=\frac{1,000 e^{-0.02 \times 22}}{\left(1-0.8\left(1-e^{-0.02}\right)\right)\left(1-0.9\left(1-e^{-0.02}\right)\right)}=666.28
$$

