

Solutions to practice questions – Study Session 13

Solution 13.1

If $F_{0,T}^P \ge S_0$:

	Cash flows	
	t = 0	t = T
Buy asset	$-S_0$	S_T
Short forward	$F_{0,T}^P$	$-S_T$
Total	$F_{0,T}^P - S_0$	0

If $F_{0,T}^P < S_0$:

	Cash flows	
	t = 0	t = T
Short asset	S ₀	$-S_T$
Buy forward	$-F_{0,T}^{P}$	S_T
Total	$S_0-F_{0,T}^P$	0

Since we have achieved arbitrage (positive cash flow with no risk) the assumptions must be false and $S_0 = F_{0,T}^P$

Solution 13.2

 $F_{0,1}^{P} = \$75 - \$1e^{-0.08(4/12)} - \$1e^{-0.08(10/12)} = \73.09

If dividends were less certain then the inherent risk could be reflected by using a discount rate greater than 8%.

Solution 13.3

Sell the observed prepaid forward for \$47.75 and buy the fairly priced prepaid forward for \$47.60, for a net initial cash inflow of 47.75 - 47.60 = 0.15 at no risk.

This may seem like small potatoes but, if the transaction can be repeated, the profits can begin to become significant.

Solution 13.4

The payoff on a call option is:

 $Max(0, S_T - K)$

As $K \rightarrow 0$ the option becomes every more likely to be exercised and the expected payoff tends towards S_T . The fair value of such an option at the outset is then:

 $F_{0,T}^P - PV(K)$

Which is the value of a prepaid forward.

Such options exist and are termed low exercise price options (LEPOs).

Solution 13.5

-

If *r* is the risk-free rate, then the forward price of the bond is given by:

 $F_{0,2} = 101.08 = 95 (1+r)^2 - 3(1+r)^{\frac{1}{2}} - 3(1+r)^{\frac{1}{2}}$

We can use the cash flow worksheet on the BAII Plus calculator. Working in half-years, we set:

[CF0]=-95, [C01]=3, [F01]=1,[C02]=0, [F01]=1,[C03]=3, [F01]=1,[C04]=101.08, [F04]=1

The [IRR][CPT] gives us 3.13% per half-year (ie 6.358% p.a.)

 $F_{0,2} = 95 (1.0313)^4 - 3(1.0313)^1 - 3(1.0313)^3$ = 101.08

We conclude that the annual effective risk-free rate is 6.358%.

The corresponding prepaid forward price is equal to:

$$F_{0,2}^P = \frac{F_{0,2}}{1.06358^2} = 89.36$$

Solution 13.6

The size of each S&P 500 index futures contract is \$250, so the multiplier for 6 futures contracts is $6 \times 250 = 1,500$.

Assuming the margin account is marked-to-market at the end of each month, the margin balance will develop as follows, remembering that the investor has a short position:

Month	Multiplier	Futures price	Price change	Margin balance
0	1,500	1,295	-	388,500.00
1	1,500	1,305	+10	375,447.36
2	1,500	1,287	-18	404,329.30
3	1,500	1,337	+50	331,356.01

The margin balance at time 0 is:

 $B_0 = 1,500 \times 1,295 \times 0.2 = 388,500.00$

The margin balance after 1 month is:

 $B_1 = 388,500 \times e^{0.06(1/12)} - 10 \times 1,500 = 375,447.36$

The margin balance after 2 months is:

 $B_2 = 375,447.36 \times e^{0.06(1/12)} + 18 \times 1,500 = 404,329.30$

The margin balance after 3 months is:

 $B_3 = 404,329.30 \times e^{0.06(1/12)} - 50 \times 1,500 = 331,356.01$

So, the profit earned after 3 months is:

 $331,356.01 - 388,500.00 \times e^{0.06(3/12)} = -63,015.41$

ie a *loss* of about \$63,015.

Solution 13.7

The correct answer is B.

Statement I is false. The price of a forward contract on a stock that pays no dividends is the initial stock price accumulated for *T* years at the risk-free interest rate *r*. The price of a prepaid forward contract is the present value at time 0 of the price of a forward contract (discounted at the risk-free interest rate), which in this case is just the initial stock price.

Statement II is true.

Statement III is false. To create a synthetic short forward contract, an investor would need to short sell $e^{-\delta T}$ shares of stock and lend $S_0 e^{-\delta T}$ at the risk-free rate.