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Solution 3.1

The interval (—oo, 0+ 1.6450'9~ ) is a 95% confidence interval for @ since:

Pr(—oo <0<0+1.6450 ) - Pr(—§—1.6450'§ <-0< oo)

= Pr(—1.6450'5 <0-0< oo)

= Pr[—1.645 < 0-0 < oo]
%

=Pr(N(0,1) > -1.645)

=0.95

Solution 3.2

To obtain an equal-tailed 99% confidence interval for u, we just replace 1.960 by 2.576, the upper 0.5% point of
N(0,1). This gives the interval:

6 6
12.500-2.576 x——,12.500 + 2.576 x —— | =(9.409, 15.591
( V25 V25 j ( )
The width of this interval is:
6
2x2.576 % =6.182
V25

Note that we can increase the level of confidence only by increasing the width of the confidence interval.
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Solutions to practice questions — Chapter 3

The width of such a 95% confidence interval is 2x1.960 x 12 . If the width is to be at most 10, then we require:

in

2x1.960x£ <10
Jn
We can rearrange this to obtain:
Jn=4704,  ie n>22128

So we would require a sample of at least 23 observations to obtain an equal sided 95% confidence interval of

width at most 10.

Solution 3.4

We require:

2><2.576x££ 10
Jn

So:

i 2 2X2D76X02 _ (hen s 3820

So the minimum sample size is 39.

Solution 3.5

An equal -tailed 95% confidence interval for u is:

(45.02 —1.960 x @ , 45.02 +1.960 x @J = (41.88, 48.16)
V40 V40
Solution 3.6

The upper 10% point of the standard normal distribution is 1.282. So the upper limit of the confidence interval is:

b=%+1.282-0 — 45.02+1.282x 1013

Jn 40

=47.07

Solution 3.7

We have =8 and s2 =386.125 .

The upper and lower 2.5% points of 27 are 1.690 and 16.01, respectively.
So an equal-tailed 95% confidence interval for the population variance is:

7 7

(n-1s>  (n-1s* | (7 x386.125 7 x 386.125)
2 2 B
X0975,n-1  X0.025,n-1 le.01 1.690

=(168.82, 1599.33)
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Solution 3.8

The width of the confidence interval is:
1,599.33-168.82 =1,430.51

Solution 3.9

The sample mean is x = 5'51025 =102.5 and the sample variance is s = %(526, 342.5—-50x102.5 ) =21.02041.

An equal-tailed 99% confidence interval for the population mean is:

102.5+2.576 /% =102.5+1.67 =(100.83,104.17)

Solution 3.10

An equal-tailed 95% confidence interval for the population variance is:
(49 x21.02041 , 49 x 21.02041) — (14.668,32.641)
70.222 31.555

Solution 3.11

n
We are told that Z(xi —E)Z =(n —1)s2 =2,016. So:
i=1

2016 _ g 78552 = 28025,n1 = 26119
X0.025,n-1

and:  —2910 1800472 = X0.975,n-1 = 5.629
X0.975,n-1

From the Tables we see that n—-1=14. So n=15.

Solution 3.12

The likelihood function is:

L=q
Multiplying this by the prior pdf, we have:

fpost(q)c’ch 0<q<1
So the posterior distribution of g is beta with parameters a=4 and b=1.
Integrating the posterior pdf between 0 and h gives:

Ih—F(S) x3 dx = Ih 4x3 dx = h*

0 I(4)r(1) 0

Setting this expression equal to 0.025 gives h =0.3976, and setting it equal to 0.975 gives h =0.9937 .
So (0.3976,0.9937)is a 95% Bayesian confidence interval for g .

© BPP Professional Education 3



Construction and evaluation of actuarial models

Solution 3.13

The likelihood function is now:
L=q(1-q)
Multiplying this by the prior pdf, we have:
fpost@xq’(1=q)  0<q<1
So the posterior distribution of g is beta with parameters a=4 and b=2.

Integrating the posterior pdf between 0 and /1 gives:

jhﬂaﬁa-x)dx =jh(20x3 ~20x" ) dx = 5h* —4h°
0 T(4)(2) 0

When h =0.2836, 5h* —4h® =0.0250. Also, when h=0.9473, 5h* —4n®

Bayesian confidence interval for g .

Solutions to practice questions — Chapter 3

=0.9750. So (0.2836,0.9473) is a 95%

Solution 3.14

The likelihood function is:
100

100 00, o 1 -Yx o 4 10056
L=[1re)=I15¢""" =—e ™ ' = e
i=1 i=1
Taking logs:
InL =-1001n 6 —0%

Differentiating with respect to :
dinL _@Jr 100x

de 6 o>
Setting this equal to 0:
10 _100% _ p—% =800
0 >

The second derivative of the log-likelihood is:
d*InL 100 200%

PP -—3 =-0.00015625 when 6 =800
0 4 4

So the maximum likelihood estimate of 6 is 6 =800. The corresponding maximum likelihood estimator of & is

6 =X . This estimator is asymptotically normally distributed and its variance is estimated by:

—1 =6
0.00015626
So a 95% confidence interval for @ is:

800 £ 1.960~/6400 =800 +156.8 = (643.2,956.8)

400
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Solution 3.15
The pdf is:
500)*
) -2

So the likelihood function is:
100 a(soo)“ ~ alOO 500100a

L= -
I e

Taking logs:

InL=100In+100a In 500 (2 +1) Y Inx;

Differentiating with respect to «:

100
dinl 190, 1001n500- 3 Inx;
da a a
Setting this equal to 0:
100 100

—+100In500- Y Inx; =0=>a =

a i-1

The second derivative is:
d*>InL 100

do? a?

100

i=1

D Inx; —~1001n 500

So the maximum likelihood estimate of « is:

100 =2.691
658.617 —1001n 500

and the estimated standard error is:

~2
2 _0.269
\'100

So a 99% confidence interval for « is:

a=

2.691£2.576x0.269 = (1.998, 3.384)
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Solution 3.16

The sample mean of all the data is:
48x10.78+22.05 1101

49

Also:

48 48
LIS 2 48510782 | = 48056 = 3 2 = 28,164.3232
47 i=1 : i=1 :

Adding in the 49t observation:
49
> x7 =28,650.5257

i=1
So:

$? = 4i8 (28, 650.5257 — 49x11.012 ) =473.1404

A 90% confidence interval for ux is then:

11.01+1.645 /% =11.01+£5.11=(5.90,16.12)

Solution 3.17

The posterior distribution for 1 is given by the conditional probabilities Pr(1=j|N=4) for j=1,2,3,4,5.

Now:
Pr(A=j,N=4) Pr(N=4|A=j)Pr(d1=j
Pr(= j|N-4)- TTEZIN=4) Pr(N =414 j)Pr(2=])
Pr(N =4) Pr(N =4)
When j=1, the numerator is:
e l1#
Pr(N=4|A=1)Pr(1=1)= x0.1=0.00153
4!

Similarly:
Pr(N =4|4=2)Pr(1=2)=0.018045
Pr(N =4|4=3)Pr(4=3)=0.050409
Pr(N=4|4=4)Pr(4=4)=0.058610
Pr(N =4|4=5)Pr(4=5)=0.017547

The denominator is:

5
Pr(N=4)=) Pr(N=4|4=j)Pr(4=j)=0.146144
j=1
So the posterior distribution for 4 is:

A 1 2 3 4 >
posterior 0.0105 0.1235 0.3449 0.4010 0.1201
probability

The narrowest 95% Bayesian confidence interval for A is [2,5].
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Solution 3.18

To find the upper limit of this confidence interval, we require the lower 5% of the 74 distribution. From the
Tables, this is 2.733. So the upper limit is:

p=3%57 _ 166850
2733
Solution 3.19

The upper 5% point of 78 is 15.507. So a 95% confidence interval for the variance of the population is:
8x57

( 15.507

Hence, a 95% confidence interval for the standard deviation of the population is:

(v/29.406, ) = (5.423, 0)

ooj = (29.406, )

Solution 3.20

The width of the confidence interval is:
2x1.960x102%4 _5
N

Ji = 2x 1.9605>< 10.204 _

So:

8=n=64
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