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Solution 2.1   
 
We need only use the Pareto moment formulas given in Section 2.2 in the Pareto summary: 
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 

Solution 2.2   
 
The payment per loss is given by: 
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Since Y is a function of X it is straightforward to compute its expected value: 
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Solution 2.3   
 

 Note first that [ ]
2 /2E X e µ σ+=  according to the moment formula in the lognormal summary. Hence we have: 

 

 

( )( ) ( )( )
( ) ( ) ( )

2 /2 2 2 2

2

Pr Pr ln 0.5 Pr , 0.5

0.5
Pr 0 ,1 1 0.5 1 0.5

X e X N

N

µ σ µ σ µ σ µ σ

µ σ µ σ
σ

+ > = > + = > + 
 

 + −
= > = −Φ = −Φ  

 

 

 

Solution 2.4   
 
For both policies #1 and #2, the policyholder retains the entire loss amount equal to 75 since there is no 
reimbursement for a loss less than the deductible. For a loss equal to 150, the owner of policy #1 will receive a 
reimbursement of 150 100 50− = . On the other hand, the owner of policy #2 will be reimbursed for the full 150 
loss. Remember that when you have a franchise deductible, then any loss exceeding the deductible is fully 
reimbursed.  

 

Solution 2.5   
 
The pdf for the loss amount X is: ( ) 0.001  for  0 1,000Xf x x= < < .  
If there is an ordinary deductible of 100 per loss, then from the ordinary deductible summary in Section 2.3, we 
have the following: 
 

 

( )
( )

( )
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100 if  0 (the continuous part)
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F y
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 ==  + >

=
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If there is a franchise deductible of 100 per loss, then from the franchise deductible summary in Section 2.3, we 
have the following: 
 

 

( )
( )
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100 if 0   (discrete part)

if 100   (continuous part)
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Y

X
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f y y

y
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 ==  >

=
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Solution 2.6   
 
Suppose that there is an ordinary deductible of 100 per loss. From the ordinary deductible summary found in 
Section 2.3, we have: 
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Suppose that there is a franchise deductible of 100 per loss. From the franchise deductible summary found in 
Section 2.3, we have: 
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 

Solution 2.7   
 
Payment events are the same as loss events when the only loss-limiting feature is a coinsurance factor. So the 
expected value and variance of the insurance payment per loss (ie the claim payment related to a single loss) are 
determined as follows: 
 

 

( ) ( )
[ ]

( )

2 2

2

!
0.85 0.85 0.85

1

0.85 500 425 , 0.85 1,000,000 722,500

var 722,500 425 541,875

k
k k k k k

Y X E Y E X
k

E Y E Y

Y

θ
α α

   = ⇒ = = ×    − −

 = × = = × = 

= − =

 

 
It would also be possible to use the fact that Y follows a 2-parameter Pareto distribution with the same 3α =  and 
with * 0.85 850θ θ= =  since θ  is a scale parameter. However, it is quite simple to solve this problem without any 
fancy footwork.  

 

Solution 2.8   
 
We saw in Section 2.3 that the payment per loss can be written as follows: 
 

 ( )( ) ( )( ) ( ) ( )( )
( ) ( )

425 100 600
0.85

0.85 100 600

0.85 600 100

Lu d

Y X d X u X X

X u X d X X

α
α α

α
+ + + +

= + = + =

= − − − = − − −

= ∧ − ∧ = ∧ − ∧
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Solution 2.9   
 

We have the general relation ( )Pr 0k kE Y E Z Y   = >    . As a result, we have: 

 

 

( ) [ ]( ) ( ) [ ] ( )( )
( ) [ ]( ) ( )

( ) [ ]( ) ( ) ( ) ( )( )
( ) ( ) [ ]( ) ( ) ( )( )

222 2

2 22

2 22

2

var Pr 0 Pr 0

Pr 0 Pr 0

Pr 0 Pr 0 Pr 0 Pr 0

var Pr 0 Pr 0 1 Pr 0

Y E Y E Y E Z Y E Z Y

E Z Y E Z Y

E Z Y E Z Y Y Y

Z Y E Z Y Y

   = − = > − >   

 = > − > 

 = > − > + > − > 

= > + > − >

 

 
If Ι  is an indicator for the event 0Y > , then the last line in the above equations is consistent with the part of the 

double expectation theorem that would say ( ) ( ) ( )var var | var |Y E Y I E Y I = +     .  

Notice that ( )| 0 var | 0 0E Y I Y I= = = =    since you are given that 0Y = , and that [ ]| 1E Y I E Z= =   , and 

( ) ( )var | 1 varY I Z= =  since Z Y=  when 0Y > . The point of this exercise is for you to notice that you do not have 

( )var Y  equal to ( ) ( )var Pr 0Z Y > . 

 

Solution 2.10   
 
The Pareto survival function is (see Section 2.2): 
 

 ( )Xs x
x

α
θ

θ
 

= + 
 

 
So from Theorem 2.3, we have: 
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 
   ∧ = = = −   + + −   

 
      = − = −     − − + +     

∫ ∫
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Solution 2.11   
 
Note first that we have: 
 

 [ ] ( ) ( )/ /2,000

2,600 100      (Table 2.1)

1 2,000 1     (Table 2.3)d d

Y X X

E X d e eθθ − −

= ∧ − ∧

∧ = − = −
 

 
 
 
 
 
From these formulas we have: 
 

 [ ] [ ] [ ] ( ) ( )( )2,600/2,000 100 /2,0002600 100 2,000 1 1 1,357.40E Y E X E X e e− −= ∧ − ∧ = − − − =  

 
We also have ( ) ( ) 100 /2,000Pr 0 Pr 100 0.95123Y X e−> = > = = , so [ ] [ ]/0.95123 1, 427.00E Z E Y= =  

 

Solution 2.12   
 
From the given information, we have: 
 

 ( ) ( )
( )

1

2

0.40 if  0 1,000
0.60 if  1,000

f x x
f x

f x x
 < ≤=  <

 

where: 
  

 
( )

( )

1
2

2 3

0.001  for  0 1,000     (uniform)

2 1,000   for  1,000   (single parameter Pareto)

f x x

f x x
x

= < ≤

×
= <

 

 
We want to calculate: 
 

 

[ ] [ ] ( ) ( )

[ ]

( )
1 2

2,000

0 2,000

21,000 2,000
30 1,000

1,000 /2 2,000

2,0002

1,000

2,000 2,000

2 1,0000.4 0.001 0.6 2,000Pr 2,000

2 1,000 1200 0.6 2,000

E X E X

E Y E X x f x dx f x dx

xx dx dx X
x

x

∞

= ∧  

= ∧ = +

 ×
= + + >  

 

×
= + − +

∫ ∫

∫ ∫

2,000 1,100
2,000

 
   =    

 
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Solution 2.13   
 

Using the same data as in Solution 2.12 we need to calculate 2E Y 
  : 

 

 

( ) ( ) ( )

( )

( )
2

2
2

2,00022 2 2
0 2,000

2 21,000 2,0002 2
30 1,000

1,000 /3
2,000

2,000 2,000

2 1,0000.4 0.001 0.6 2,000 Pr 2,000

133, 333.33 0.6 2

E X

E Y E X x f x dx f x dx

xx dx dx X
x

∞

 ∧  

   = ∧ = +   

 ×
= + + >  

 

= +

∫ ∫

∫ ∫

( )
22,0002 2

1,000

1,0001,000 ln 2,000
2,000

1,565,110

x
   × +     

=

 

Using the result in Solution 2.12, we have: 
 
 ( ) 2var 1,565,110 1,100 355,110Y = − =  
 
For aggregate annual claims we have 1 LNS Y Y= + + : 
 

 

[ ] [ ] [ ]
( ) [ ] ( ) [ ]( ) ( )

( )

2

2

80 1,100 88,000

var var var

80 355,110 1,100 120 173,608,800

L

L L

E S E N E Y

S E N Y E Y N

= = × =

= +

= × + × =

 

 

Solution 2.14   
 
The first thing we need to do is compute the gamma parameters: 
 
 [ ] ( ) 2100 , var 5,000 2 , 50E X Xαθ αθ α θ= = = = ⇒ = =  
 
With an ordinary deductible of 50d =  the payment per loss is ( )50Y X += − . Using Theorem 2.2 and Table 2.3, 
we have an expected payment per loss given by: 
 

 

[ ] ( ) ( )( )
( ) ( )( )

( )( ) ( )( )
[ ] [ ] [ ]

1 2 1

50 1 ; / 1 ; /

100 3 ; 50 /50 50 1 2 ;50 /50

100 1 1 1 1 /2! 50 1 1 44.82

50 100 44.82 55.18

E X d d d

e e

E Y E X E X

αθ α θ α θ

− −

∧ = Γ + + −Γ

= Γ + −Γ

= − + + + + =

= − ∧ = − =

 

 
To compute the expected payment per payment event we must divide [ ]E Y  by: 
 

 
( ) ( ) ( ) ( )( )

[ ] [ ]

1Pr 0 Pr 50 1 2 ; 50 / 1 1 1 1 1 0.73576

/0.7356 75

Y X e

E Z E Y

α θ −> = > = −Γ = = = − − + =

= =
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With a franchise deductible of 50d =  the payment per loss is ( ) ( )5050 50Y X I X+= − +  where ( )50I X  is an 
indicator for the event 50X > . So the expected payment per loss is: 
 
 [ ] ( ) ( )50 50 Pr 50 91.97E Y E X X+ = − + > =   

 
The expected payment per payment event is thus: 
 

 [ ] [ ]
( )

( ) ( )
( )

( )
( )

50 50 Pr 50 50
50 75 50 125

Pr 0 Pr 50 Pr 50

E X X E XE Y
E Z

Y X X
+ +   − + > −   = = = + = + =

> > >
  

 

Solution 2.15   
 
You will need the expected limited loss formula for the Pareto family: 
 

 
[ ]

[ ]
[ ]

1 1500 500 5001 1
1 1 600 6

100 500 /6 1LER
500 6

E X d
d

E X
E X

α
θ θ

α θ

−         ∧ = − = − =     − +      
∧

= = =

 

 
The easiest way to calculate the MEL 100| 100E X X= − >    is to use the fact that 100| 100X X− >  follows a 2-
parameter Pareto distribution with 2 , * 100 600α θ θ= = + = . So we have: 
 

 *MEL 100| 100 600
1

E X X θ
α

= − > = =   −
 

 

Solution 2.16   
 
Using the results in Solution 2.15, the expected payment per loss this year is: 
 

 ( ) [ ] [ ] 500100 100 500 416.67
6

E X E X E X+ − = − ∧ = − =   

 
We are asked to calculate ( )1.1 100E X + −   as the expected payment per loss next year: 

 
Option 1. Use the fact that 1.1X is Pareto with ( )2 , * 1.1 500 550α θ= = = . Therefore, we have: 
 

  

[ ]

( ) [ ] [ ]

α
θ θ

α θ

−

+

      ∧ = − = − =     − +     
 − = − ∧ = − = 

= − =

1
* * 5501.1 100 1 550 1 84.62
1 * 100 650

1.1 100 1.1 100 550 84.62 465.38

465.38Percent Increase 100( 1) 11.7%
416.67

E X

E X E X E X  
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Option 2. Factor out the 1.1: 
   

  

( ) [ ]

( )

100 1001.1 100 1.1 1.1
1.1 1.1

500 500 5001.1 1 465.38
2 1 2 1 500 100/1.1

E X E X E X E X+
+

       − = − = − ∧            
   
 = − − =     − − +   

 

 

Solution 2.17   
 
The payment per loss is 500Y X= ∧ . The variance of Y can be computed with the help of the limited loss 
moments for the gamma distribution that are found in Tables 2.3 and 2.4: 
 

 
[ ] ( ) ( )( )
( ) ( ) ( ) ( )( )2 2 2

1 ; / 1 ; /

1 2 ; / 1 ; /

E X d d d d

E X d d d d

αθ α θ α θ

α α θ α θ α θ

∧ = Γ + + −Γ

 ∧ = + Γ + + −Γ
 

 

 
Since 2α = , 250θ = , and 500d = , we have: 
 

 

( ) ( )

( ) ( )

( ) ( )

1
2

1 2
2

1 2 3
2

2; / 2 ;2 1 1 0.59399
1!

2 21 ; / 3 ;2 1 1 0.32332
1! 2!

2 2 2; / 4 ;2 1 1 0.14288
1! 2! 3!

d e

d e

d e

α θ

α θ

α θ

−

−

−

 
Γ =Γ = − + =  

 
 

Γ + =Γ = − + + =  
 

 
Γ =Γ = − + + + =  

 

 

 

[ ] ( ) ( )( )
( ) ( ) ( ) ( )( )
( )

2 2 2

500 500 3 ; 2 500 1 2 ; 2 364.66

500 2 3 250 4 ; 2 500 1 2 ; 2 155.080.16

var 22,100

E X

E X

Y

∧ = Γ + −Γ =

 ∧ = Γ + −Γ =
 

=
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Solution 2.18   
 
The payment per loss is ( ) ( )50 550Y X X+ += − − −  since / 50 500 /1 550u d L α= + = + = . For an exponential 
distribution we have: 
 

 
( ) [ ] [ ] ( )

[ ] ( ) ( ) ( )
/ /

0.1 1.1

1

50 550 500 285.98

d dE X d E X E X d e e

E Y E X E X e e

θ θθ θ θ− −
+

− −
+ +

 − = − ∧ = − − = 

  = − − − = − =   

 

 
From part (iv) of Theorem 2.4, we have: 
 

 

( )( ) ( )( ) ( ) ( )

( )

( )
( ) ( )

( )50/5002 2

2 22

2 2

2 500  conditional 2 500  conditional
exponential distribution exponential distrib

50 550 2 550 50 550

50 | 50 Pr 50 550 | 550

e

E Y E X E X E X

E X X X E X X
−

+ + +
      = − − − − − −         
   = − > > − − >       ( )

( )

550/500

550/500

ution

500    conditional
exponential distribution

Pr 550

1,000 550| 550 Pr 550

119,547.63

e

e

X

E X X X

−

−

>

− − > >  

=

 

 
We now have ( )var 37,761.25Y = . Aggregate annual claims are 1 LNS Y Y= + +  where [ ] 50LE N =  and 

( )var 100LN = . From compound sum moment formulas we have: 
 

 

[ ] [ ] [ ]
( ) [ ] ( ) [ ]( ) ( )

( )

2

2

50 285.98 14,299.16

var var var

50 37,761.25 285.98 100 10,066,700

L

L L

E S E N E Y

S E N Y E Y N

= = × =

= +

= × + × =

 

 

Solution 2.19   
 
Using results from Solution 2.18, we have: 
 

 
[ ]( ) [ ]

( )
[ ] [ ]

( )
[ ]
( )

( ) ( ) ( )( )

1.25 0.25
Pr 1.25 Pr 1

var var var

1 1.13 1 0.7 1.1 0.3 1.2 0.130

S E S E S E S E S
S E S

S S S

   − −   > = > ≈ − Φ
   
   

= − Φ ≈ − Φ + Φ =
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Solution 2.20   
 
We saw in Solution 2.14 that 2α =  and 50θ = . We also calculated ( )50 55.18E X + − =  . Here is another way to 

duplicate the expected value calculation and to speed up the second moment calculation. We will identify the 
distribution of 50| 50Z X X= − >  as a 50/50 mixture of an exponential with 50θ =  and a gamma with 2α =  and 

50θ = : 
 

 ( ) ( )
( )

( )( )
( )

( ) ( )( )

( )

1
50 /50

50 1
50 /50

/50 /50 /50

50| 50

50 /50
1

1!1 2 ; 50 /5050
50 1 2 ; 50 /50 11

1!

2 /50 0.50 0.50 1 /50
2

z

X
Z z

X

z z z

Z X X

z
e

zs z
s z p

s
e

ze e e z

− +

−

− − −

= − >

 + +
 − Γ ++  = = = =

− Γ  
+  

 
+ = = + + 

 

 

 
This final expression is a weighted average of an exponential survival function and a gamma survival function. 
So moments about the origin of Z can be computed as weighted averages of exponential and gamma moments: 
 

 
[ ] ( ) ( )

( ) ( )2 2 2

0.50 50 0.50 100 75

0.50 2 50 0.50 2 3 50 10,000

E Z

E Z

= + =

  = × + × × = 
 

 
Now multiply by ( ) ( ) ( )Pr 0 Pr 50 1 2 ;50 /50 0.73576Y X> = > = − Γ =  to obtain moments of Y: 
 

 
[ ] [ ]

( )

2 20.73576 55.18 , 0.75376 7,357.59

var 4,312.54

E Y E Z E Y E Z

Y

   = × = = × =   
=

 


