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Solution 11.1   
 
From the assumption of a conditional gamma distribution, along with standard gamma moment formulas, we 
have: 
 ( ) ( ) ( ) 2| 2 , var | 2E X Xµ νΘ = Θ = Θ Θ = Θ = Θ    
 
From the assumption that Θ  is uniformly distributed on 50 ,100   , along with standard uniform moment 
formulas, we have: 
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50var var 2 4 833.33
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= =  Θ  = Θ = × = 
 

  = Θ = Θ = + =      
 

= Θ = Θ = × =

 

 

Solution 11.2   
 
From the assumption of a conditional gamma distribution, along with standard gamma moment formulas, we 
have: 
 ( ) ( ) ( ) 2| 2 , var | 2E X Xµ νΘ = Θ = Θ Θ = Θ = Θ    
 
From the assumption that Θ  is either 25 or 100 with respective probabilities 0.6 and 0.4, we have: 
 
 [ ] 255 , 4, 375E E  Θ = Θ =   

 
The remaining structural parameters are: 
 

 

[ ] ( ) [ ]
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( )( ) ( ) ( )
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var | 2 2 4, 375 8,750

var var 2 4 4, 375 55 5, 400

E X E E
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a

µ µ
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= =  Θ  = Θ = × = 
  = Θ = Θ = × =   

= Θ = Θ = × − =
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Solution 11.3   
 
From the given data we have ( )3 125 240 90 /3 151.67x = + + =  
 
From the results in Solution 11.1, we have the following credibility prediction: 
 

 ( )

( ) [ ]3

3 3
/ 3 14 17

3 141 151.67 150 150.29
17 17

nZ
n a

Z x Z E X

ν
= = =

+ +

+ − = × + × =
 

 

Solution 11.4   
 
From the given data we have ( )3 125 240 90 /3 151.67x = + + =  
 
From the results in Solution 11.2, we have the following credibility prediction: 
 

 ( )
( ) [ ]3

3 0.64930
/ 3 1.62037

1 0.64930 151.67 0.35070 110 137.05

nZ
n a

Z x Z E X
ν

= = =
+ +

+ − = × + × =
 

 

Solution 11.5   
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 

Solution 11.6   
 
In Solution 11.5 we saw that / 50aν = . So to attain 90% credibility we must have: 
 

 
( )

0.90 450
/ 50

n nZ n
n a nν

= = = ⇒ =
+ +

 

 

Solution 11.7   
 
Since they have the same risk parameter the covariance between 1 2and N N  is the same as Buhlmann's  a , the 
variance of the hypothetical means (see Section 11.2). From the conditional negative binomial assumptions and 
standard moment formulas, we have: 
 
 ( ) | 2E Nµ Θ = Θ = Θ    
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Since Θ  is assumed to be uniform on 5 ,10   , we have: 

 ( )
25 25var

12 12
Θ = =  

 
Finally, we have: 

 ( ) ( )( ) ( )1 2
25 25cov , var var 2 4
12 3

N N a µ= = Θ = Θ = × =  

 

Solution 11.8   
According to a result in Section 11.2 , ( )var nN a

n
ν

= + .  Here we have 2n =  observations. In Solution 11.7 we 

saw that 25/3a = . So we must compute ν : 
 

 

( ) ( ) ( )

( ) ( ) [ ]( )

( )

2

2
2

2

var | 2 1

2 1 2

52 7.5 7.5 131.67
12

25var 65.83 74.17
2 3

N

E E E E

N a

ν

ν ν

ν

Θ = Θ = Θ +Θ

 ⇒ =  Θ  =  Θ +Θ  = × Θ + Θ     

  
 = × + + =     

⇒ = + = + =

 

 

Solution 11.9   
According to a result in Section 11.2, the ESE is equal to ( )1 Z aν + − . From Solutions 11.1 and 11.3 we have: 
 

 
( )

311,666.67 , 833.33 ,
17

1 12, 352.94

a Z

ESE Z a

ν

ν

= = =

⇒ = + − =
 

 

Solution 11.10   
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( ) ( )

[ ] ( ) [ ]
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( )( ) ( )
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2 2

|    (Poisson formula)

var | (Poisson formula)

2 0.15 0.30  (gamma formula)

0.30  (same as above)

var var 2 0.15 0.045  (gamma formula)
4
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N
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a
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µ

ν

µ µ αθ

ν ν

µ αθ

ν

Λ = Λ = Λ  
Λ = Λ = Λ

= =  Λ  = Λ = = × = 
=  Λ  = Λ = 

= Λ = Λ = = × =

= =
+ ( )

( ) [ ]4

0.375
0.30/0.045

0prediction 1 0.375 0.625 0.30 0.1875
4

Z n Z E N

=
+

= + − = × + × =

 

 
Note: This is the Poisson/gamma model where the Bayesian credibility estimate is linear. So you could 
also solve this problem from memorized Bayesian results for this model. See Chapter 10. 
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Solution 11.11   
 
From (i) and (ii) we have: 
 

 
( ) ( )

( ) [ ]
var |    (Poisson formula)

0.30

N

E E

ν

ν ν

Λ = Λ = Λ

=  Λ  = Λ = 
 

 
There is not enough information to compute ( ) ( )var | vara E N= Λ = Λ    directly. However, we can compute 

( )var N  from (iii), and we know that ( )var N aν= + : 
 

 
( ) ( )
( )

(iii) var 1 2 0.15 1.15 0.345
0.345 var 0.30 0.045

3/ 0.30/0.045 6.667 0.3103
3 6.667

N r
N a a a

k a Z

β β

ν

ν

⇒ = + = × × =

= = + = + ⇒ =

⇒ = = = ⇒ = =
+

 

 

Solution 11.12   
 
Note first that the distribution of Θ  is beta with parameters 3 , 1a b= = . So from beta moment formulas we have: 
 

 [ ] 23 1 3 4 3,
4 1 4 5 5

a a aE E
a b a b a b

+ Θ = = Θ = × = × = + + + +
 

 
The structural parameters are: 
 

 

( )
( ) ( ) ( )

[ ] ( ) [ ]

( ) ( )

( )( ) ( ) ( )
2

| 3    (binomial formula)

var | 3 1 (binomial formula)
93   (beta formula)
4

3 33 1 3 0.45  (beta formulas)
4 5

3 3var var 3 9 var 9
5 4

E N

N

E N E E

E E

a

µ

ν

µ µ

ν ν

µ

Θ = Θ = Θ  
Θ = Θ = Θ −Θ

= =  Θ  = Θ = 

 =  Θ  =  Θ −Θ  = × − =      
   = Θ = Θ = Θ = −     

( ) ( )

( ) [ ]2

0.3375   (beta formula)

2 0.6
/ 2 0.45/0.33750

6 9prediction 1 0.60 0.40 2.7
2 4

nZ
n a

Z n Z E N

ν

=

= = =
+ +

= + − = × + × =

 

 
Note: This is the binomial/beta model where the Bayesian credibility estimate is linear. So you could also 
solve this problem from memorized Bayesian results for this model. See Chapter 10. 
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Solution 11.13   
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( ) ( )
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|    (exponential formula)

var | (exponential formula)
400 200   (Pareto formula)

1 2
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var var 160,000 2
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X
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a

µ

ν
θµ µ

α
θν ν

α α

µ

Λ = Λ = Λ  

Λ = Λ = Λ

= =  Λ  = Λ = = =  −

× =  Λ  = Λ = = =    − −

= Λ = Λ = −

( ) ( )
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2

4
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4 0.75

/ 4 4/3
1, 210prediction 1 0.75 0.25 200 276.88

4

nZ
n a

Z x Z E X

ν

=

= = =
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= + − = × + × =

 

 

Solution 11.14   
 
From (ii) we can see that the distribution of the risk parameter Λ  is a two-point mixture of two gamma 
distributions: 
   

30%  gamma with parameters 2 , 1/7
70%  gamma with parameters 2 , 1/3

α θ
α θ
= =
= =

 

 
For a gamma distribution, we have: 
 
 ( ) 2first moment , second moment 1αθ α α θ= = +  
 
So the first two moments for our 2-point mixture are: 
 

 

[ ]

2 2
2

1 10.3 2 0.7 2 0.55238
7 3

1 10.3 2 3 0.7 2 3 0.50340
7 3

E

E

   Λ = × × + × × =   
   
           Λ = × × × + × × × =              

 

 
The structural parameters are: 
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( ) ( )

[ ] ( ) [ ]
( ) [ ]
( )( ) ( ) 2

|    (Poisson formula)

var | (Poisson formula)

0.55238   (2-point gamma mix)

0.55238   (2-point gamma mix)

var var 0.50340 0.55238 0.19828  (2-point gamma 

E X

X

E X E E

E E

a

µ

ν

µ µ

ν ν

µ

Λ = Λ = Λ  
Λ = Λ = Λ

= =  Λ  = Λ = 
=  Λ  = Λ = 

= Λ = Λ = − =

( )

( ) [ ]2

mix)
2 0.41789

/ 2 2.78591
0prediction 1 0.41789 0.58211 0.55238 0.32154
2

nZ
n a

Z x Z E X

ν
= = =

+ +

= + − = × + × =
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Solution 11.15   
 
In Section 11.1 we indicated that by substituting 1m =  into the formulas for the averages iY  we could obtain 
formulas for the hidden underlying 'X s , thus turning a Buhlmann-Straub  problem into an ordinary Buhlmann  
problem. Substituting 1m =  results in our old friend from Chapter 10, the normal/normal model, where the 
Bayesian prediction is a linear function of the data. Recall that this means the Bayesian and 
Buhlmann predictions are identical. So let’s make this one quick and use a Chapter 10 formula for the Bayesian 
credibility prediction. 
 
For the normal/normal model, we are given: 
 

 

2 2
1 2

30

2 2 2 2
1 2 1 2

200 , 275 , 625
20 10 30

20 225 10 210
220

30

30 220 200 30 11* / 219.71
275 625 275 625

linerar Bayesian Buhlmann Bayesian *   (posterior mean) 21

i

n

x

x n

µ σ σ

µµ
σ σ σ σ

µ

= = =
= + =

× + ×
= =

    ×   = + + = + + =               
⇒ ⇒ = =

∑

9.71

 

 

Solution 11.16   
 
From the first two columns of the joint probability table we can determine the conditional distributions of X  for 

0  and 1θ θ= = : 
 

X  ( )Pr | 0X x θ= =  ( )Pr | 1X x θ= =  

0 3/7 3/6 

1 2/7 2/6 

2 2/7 1/6 
 
From this table we can construct a table of values of the conditional means and variances: 
  

Θ  ( )Pr θΘ =  |E X Θ    ( )var |X Θ  

0 0.7 6/7 34/49 

1 0.3 4/6 20/36 
 
The marginal probabilities for the risk parameter in the table above are obtained by summing down the columns 
in the joint probability table. 
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Solution 11.17   
 
From the results in Solution 11.16, we have: 
 

 

[ ]

( )

( )

( )

2 2
2

6 4| 0.7 0.3 0.8
7 6

34 20var | 0.7 0.3 0.65238
49 36

6 4var | 0.7 0.3 0.80 0.00762
7 6

10 0.10458
/ 10 85.625

E X E E X

E X

a E X

nZ
n a

µ

ν

ν

 = = Θ = × + × =   

 = Θ = × + × = 

     = Θ = × + × − =            

= = =
+ +

 

 
Note: We could have obtained the marginal distribution of X  by summing across the rows of the joint 
probability table. This would provide an alternative way to determine the overall mean [ ]E X  and a way to check 

the computations of  and aν  since ( )var X aν= + . 

 

Solution 11.18   
 
From the results of Solutions 11.16 and 11.17, we have: 
 

 ( ) [ ]10
4prediction 1 0.10458 0.89542 0.8 0.75817

10
Z x Z E X= + − = × + × =  
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Solution 11.19   
 
From the conditional PDF for the annual claim amount, we have: 
 

 

( ) ( )

( )

( )

( )

2

20

2
2 2

20

2

2
|    for  0

2
|

3
2

|
6

var |
18

X
x

f x x

x
E X x dx

x
E X x dx

X

θ
θ θ

θ
Θ

Θ

−
Θ = = ≤ ≤

Θ− Θ
⇒ Θ = × =  

Θ
Θ− Θ Θ = × =  Θ

Θ
Θ =

∫

∫
 

 
From the distribution of Θ  and the results above, we have: 
 

 

( )

[ ] [ ]

( )

( )

100

50

2 100 2 2
50

2    for  50 100
7500

1 2| 25.92593 ( 77.77778)
3 3 7500

1 2var | 347.22222 ( 6, 250)
18 18 7500

va
var | var

3

E X E E X E d E

E X E d E

a E X

θπ θ θ

θµ θ θ

θν θ θ

= ≤ ≤

Θ  ⇒ = = Θ = = × × = ⇒ Θ =      
 Θ   = Θ = = × × = ⇒ Θ =      

Θ = Θ = =      

∫

∫

( ) ( )2r 6,250 77.77778
22.29081

9 9
Θ −

= =

 

 

Solution 11.20   
 
From the results of Solution 11.19, we have: 
 

 ( ) ( )
( ) [ ]1

1 1 0.06032
1 / 1 15.57692

prediction 1 0.06032 50 0.93968 25.92593 27.38

Z
a

Z x Z E X
ν

= = =
+ +

= + − = × + × =
 


