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Solution 1.1   
 
An estimate is a number, which is calculated using some sample data. 
 
An estimator is a random variable.  So its value depends on the outcome of some experiment and it has a 
statistical distribution. 

 

Solution 1.2   
 
The likelihood function is: 
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where C  is a constant.  Because there are now 2 unknown parameters, we have to differentiate with respect to 
each parameter and solve 2 simultaneous equations. 
Taking logs, we obtain: 
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If we make the substitution 2ν σ= , then this becomes: 
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Differentiating with respect to µ  and ν : 
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Setting these equal to 0 gives: 
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and: 
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So what we have shown here is that the MLEs for µ  and 2σ  in the normal distribution are the sample mean and 
the sample variance (calculated using a denominator of n ).  These results seem intuitively reasonable. 

 

Solution 1.3   
 
The estimator is: 
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and its expected value is: 
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Since ( )2~ ,iX N µ σ  for 1, 2, ...,i n= , it follows that 
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 and: 

 ( ) ( ) ( ) 22 2 2var i iiE X X E X σ µ = + = +    for 1, 2, ...,i n=  
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Substituting these into the expression for ( )2E σ , we obtain: 
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Since ( )2 2E σ σ≠ , 2σ  is a biased estimator of 2σ . 
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Solution 1.4   
 
We need the mean and variance of X .  Using the standard results, we have: 
 ( )E X µ=   and:  2var( ) /X nσ=  

We can see from these that both the conditions for consistency are satisfied, and so X  is a consistent estimator for 
µ . 

In fact it is also true that 2 21 ( )
1 iS X X

n
= −

− ∑  is a consistent estimator for 2σ .  You might like to check to see whether 

you can prove that this is also true. 

 

Solution 1.5   
 
The MSE measures the amount of “squared deviation” of the estimator from the parameter.  If this squared 
deviation is small, then the estimator is fairly close to the true value of the parameter.  The smaller the MSE, the 
closer the estimator is on average, whatever the true value of the parameter. 
You might have thought that there would have been other measures of this closeness that might be superior, for 
example ˆ( )E θ θ−  or ˆ(| |)E θ θ− .  However, there are problems with both of these apparently simpler possibilities.  
The first can be minimized by any unbiased estimator, and so is not sufficiently distinctive.  The second has the 
problems of calculation that are associated with modulus functions.  So the definition of mean squared error 
given here is preferable as a measure of “goodness-of-fit” to the true parameter value. 

 

Solution 1.6   
 
From Example 1.1 we have: 
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This has expected value: 
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So the asymptotic variance of θ  is 
2

400
θ .  As we have estimated the value of θ  to be 1.8825, we estimate the 

asymptotic variance to be 
21.8825 0.00886

400
= . 
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Solution 1.7   
 
From the Tables, we have: 
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Equating the theoretical mean to the sample mean and the theoretical variance to the sample variance, we obtain 
the equations: 
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Squaring the first of these and substituting into the second gives: 

 
22600 1 1, 600eσ − = 

 
 

So: 

 2
2

1, 600ln 1 0.00443
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σ
 

= + = 
 

 

and: 

 21ln 600 6.39471
2

µ σ= − =  

Note. The Tables refer to µ  and σ  as the parameters. Here we have called µ  and 2σ  the parameters. No 
difference is intended. 

 

Solution 1.8   
 
From the Tables: 

 1 1 1( ) (2)E X θ
θ

− −= Γ =  

(Note that for an integer n , the gamma function is ( ) ( 1)!n nΓ = − ) 
(Note also that the formula is valid for 1k <  for this distribution.) 
Taking the sample values from the Example 1.7, we have: 
 1 0.266917ix− =∑  

Equating these, we find that ˆ 56.1972θ = . 
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Solution 1.9   
 
The median lies between the 4th and 5th of these values. 
The 4th value, or 400 /9 44.44= th percentile is 547. 
The 5th value, or 500 /9 55.56= th percentile is 609. 
Interpolating gives: 

 50
(50 400 /9)

547 (609 547) 578
(500 /9 400 /9)

π
−

≈ + × − =
−

 

Alternatively, for the median you could just take the average of the 4th and 5th sample values. 

 

Solution 1.10   
 
To find the percentile matching estimate of θ , we equate the theoretical median to the sample median: 
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Solution 1.11   
 
From the Tables, the distribution function of the inverse Weibull distribution is: 

 ( / )( ) xF x e
τθ−=  

Equating the theoretical median to the sample median, and the theoretical 90th percentile to the 90th percentile of 
the sample: 

 ( /1,000) 0.5e
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Taking logs: 
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and taking logs again: 
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We can also find the estimate for θ  by substituting back if necessary.  
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Solution 1.12   
 
Using the notation given in the text, we have 100n = , 1 58n = , 2 32n = , 3 10n = , 1 0a = , 1 2 100b a= = , 

2 3 200b a= = , 3 500b = . 
So the first raw moment is: 
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Similarly, the second raw moment is: 
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Solution 1.13   
 
Let iX  denote the amount of the i th claim.  The posterior distribution of θ  is given by the conditional 

probabilities 
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The first of these is given by: 
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However, since the iX ’s are independent ( )Exp θ  random variables, 
5

1
~ (5, )i

i
X Gamma θ

=
∑ .  (This is a well-known 

result and is easily proved using moment generating functions.) 
So: 
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 (a constant), and: 
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Similarly: 
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The probability in the denominator is: 
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Solution 1.14   
 
D  can be modeled as a Binomial random variable since: 
• we have a fixed number of “trials”, ie 500 lives under observation 
• each trial has two possible outcomes, ie each life under observation will either die during the year or 

survive to the end of the year 
• the lives are assumed to be independent 
• each life is assumed to have the same probability of dying during the year as every other life. 
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Solution 1.15   
 
The PDF of the prior distribution of λ  is: 
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The likelihood function is given by: 
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So the PDF of the posterior distribution of λ  is: 
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8
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λ
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where C  is a constant.  Hence the posterior distribution of λ  is inverse gamma with parameters 7α =  and 
10, 304θ = . 

 

Solution 1.16   
 
The Bayesian estimate of 60q  under all-or-nothing loss is the mode of the posterior distribution of 60q .  The mode 
is the value of q  that maximizes the posterior PDF.  We have: 

 15 1,495( ) (1 )postf q C q q= −  
So: 
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Setting this equal to 0: 
 3(1 ) 299 0 302 3 0.00993q q q q− − = ⇒ = ⇒ =  

 

Solution 1.17   
 
The PDF of the prior distribution of λ  is: 
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Now let jN  denote the number of claims in year j .  Since ~ ( )jN Poi λ , the likelihood function is given by: 
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1 2 2( ) Pr( 12)Pr( 12)
12 ! 12 ! (12 !)

e e eL N N
λ λ λλ λ λλ

− − −
= = = = =  

The PDF of the posterior distribution of λ  is therefore: 
 31 5 /2( )postf C e λλ λ −=  0λ >  

where C  is a constant.  We recognize this as the PDF of a (32, 0.4)Gamma  distribution.  The mean of this 
distribution is 32 0.4 12.8× = , so the required Bayesian estimate of λ  is 12.8.   
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Solution 1.18   
 
The hazard function was defined in Course M. 
 
Let |40 80Y X X= < < .  Then: 
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Solution 1.19   
 
(i) Let iT  denote the lifetime random variable for the i th life to die and jT  denote the lifetime random 

variable for the j th life to be censored.  The likelihood function is: 
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(ii) The log-likelihood is: 

50.16log 4 logL θ
θ

= − −  

 Differentiating with respect to θ  gives: 

  2
log 4 50.16d L
dθ θ θ

= − +  

 Setting the derivative equal to 0 and rearranging, we then obtain: 

  50.16 12.54
4

θ = =  

 Finally, since: 

  
2

2 2 3
log 4 100.32 0.0254

d L
dθ θ θ

= − = −  when 12.54θ =  

log L  has a maximum turning point at 12.54θ = .  Thus 12.54 is the maximum likelihood estimate of θ . 
 



Construction and evaluation of actuarial models Solutions to practice questions – Chapter 1 

 © BPP Professional Education 10

A quicker way to establish this result is to note that the log-likelihood is the PDF of an inverse gamma random 
variable with parameters 3α =  and 50.16θ = .  This is maximized at the mode.    
 
The formula for the mode of the inverse gamma distribution is given in the Tables as: 

 50.16 12.54
1 4

θ
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= =
+

 

 
(iii) The hazard function of ( )Exp θ  is: 

1( )h t
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Using the maximum likelihood estimate of θ  obtained in (ii), the hazard function becomes: 
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So the survival function is: 
  /12.54( ) tS t e−=  for 0t >  

 

Solution 1.20   
 
(i) Let iX  denote the i th loss random variable.  The observed values of the last six loss amounts are: 
 1250, 1535, 1490, 1604, 2205, 2090 

Since only losses in excess of $1000 are observed, the likelihood function is given by: 
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(ii) The last two values in the list represent censored observations.  So the likelihood function becomes: 
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So the likelihood is: 
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